자바 디자인 패턴의 싱글톤을 함께 분석해보자
이 기사에서는 디자인 패턴 중 싱글턴 패턴에 대한 관련 내용을 주로 소개하는 java에 대한 관련 지식을 제공합니다. 싱글턴의 기본 원리는 싱글턴 객체의 클래스가 한 번만 초기화된다는 것입니다. 함께하면 모두에게 도움이 되기를 바랍니다.
추천 학습: "java 비디오 튜토리얼"
단일 요소의 열거형은 싱글톤을 구현하는 가장 좋은 방법인 경우가 많습니다.
싱글톤이란 무엇인가요? 기본 원칙에 따라 싱글톤 객체의 클래스는 한 번만 초기화됩니다. Java에서는 JVM에 클래스의 객체 인스턴스가 하나만 존재한다고 말할 수 있습니다. Android에서는 프로그램이 실행되는 동안 이 클래스의 개체 인스턴스가 하나만 있다고 말할 수 있습니다.
싱글톤 모드의 간단한 구현 단계:
생성자는 비공개이므로 new를 통해 외부에서 객체를 생성할 수 없습니다.
은 이 클래스의 인스턴스를 얻기 위한 외부 정적 메서드를 제공합니다.
클래스 내부에 이 클래스의 객체를 생성하고 2단계의 정적 메서드를 통해 반환합니다.
위 단계에 따라 더 엄격하다고 생각되는 싱글톤 패턴을 작성한 다음 작성한 싱글톤이 다음 조건을 충족할 수 있는지 확인하세요.
- 싱글톤이 요청 시 로드됩니까?
- 싱글톤은 스레드로부터 안전한가요?
동시성의 세 가지 요소인 원자성, 가시성, 질서가 관련됩니다
涉及到并发三要素:原子性、可见性、有序性
- 你的单例暴力反射和序列化安全吗?
一、饿汉式
//JAVA实现public class SingleTon { //第三步创建唯一实例 private static SingleTon instance = new SingleTon(); //第一步构造方法私有 private SingleTon() { } //第二步暴露静态方法返回唯一实例 public static SingleTon getInstance() { return instance; } }//Kotlin实现object SingleTon
优点:设计简单 ,解决了多线程实例化的问题。
缺点:在虚拟机加载SingleTon类的时候,将会在初始化阶段为类静态变量赋值,也就是在虚拟机加载该类的时候(此时可能并没有调用 getInstance 方法)就已经调用了 new SingleTon();
创建了该对象的实例,之后不管这个实例对象用不用,都会占据内存空间。
二、懒汉式
//JAVA实现public class SingleTon { //创建唯一实例 private static SingleTon instance = null; private SingleTon() { } public static SingleTon getInstance() { //延迟初始化 在第一次调用 getInstance 的时候创建对象 if (instance == null) { instance = new SingleTon(); } return instance; } }//Kotlin实现class SingleTon private constructor() { companion object { private var instance: SingleTon? = null get() { if (field == null) { field = SingleTon() } return field } fun get(): SingleTon{ return instance!! } } }
优点:设计也是比较简单的,和饿汉式不同,当这个Singleton被加载的时候,被static修饰的静态变量将会被初始化为null,这个时候并不会占用内存,而是当第一次调用getInstance方法的时候才会被初始化实例对象,按需创建。
缺点:在单线程环境下是没有问题的,在多线程环境下,会产生线程安全问题。在有两个线程同时 运行到了 instane == null这个语句,并且都通过了,那他们就会都各自实例化一个对象,这样就又不是单例了。
如何解决懒汉式在多线程环境下的多实例问题?
-
静态内部类
//JAVA实现public class SingleTon { private static class InnerSingleton{ private static SingleTon singleTon = new SingleTon(); } public SingleTon getInstance(){ return InnerSingleton.singleTon; } private SingleTon() { } }//kotlin实现class SingleTon private constructor() { companion object { val instance = InnerSingleton.instance } private object InnerSingleton { val instance = SingleTon() } }
로그인 후 복사 -
直接同步方法
//JAVA实现public class SingleTon { //创建唯一实例 private static SingleTon instance = null; private SingleTon() { } public static synchronized SingleTon getInstance() { if (instance == null) { instance = new SingleTon(); } return instance; } }//Kotlin实现class SingleTon private constructor() { companion object { private var instance: SingleTon? = null get() { if (field == null) { field = SingleTon() } return field } @Synchronized fun get(): SingleTon{ return instance!! } } }
로그인 후 복사优点:加锁只有一个线程能实例该对象,解决了线程安全问题。
缺点:对于静态方法而言,synchronized关键字会锁住整个 Class,每次调用getInstance方法都会线程同步,效率十分低下,而且当创建好实例对象之后,也就不必继续进行同步了。
备注:
此处的synchronized保证了操作的原子性和内存可见性。
-
同步代码块(双重检锁方式DCL)
//JAVA实现 public class SingleTon { //创建唯一实例 private static volatile SingleTon instance = null; private SingleTon() { } public static SingleTon getInstance() { if (instance == null) { synchronized (SingleTon.class) { if (instance == null) { instance = new SingleTon(); } } } return instance; } }//kotlin实现class SingleTon private constructor() { companion object { val instance: SingleTon by lazy(mode = LazyThreadSafetyMode.SYNCHRONIZED) { SingleTon() } } } 或者class SingleTon private constructor() { companion object { @Volatile private var instance: SingleTon? = null fun getInstance() = instance ?: synchronized(this) { instance ?: SingleTon().also { instance = it } } } }
로그인 후 복사优点:添加了一个同步代码块,在同步代码块中去判断实例对象是否存在,如果不存在则去创建,这个时候其实就完全可以解决问题了,因为虽然是多个线程去获取实例对象,但是在同一个时间也只会有一个线程会进入到同步代码块,那么这个时候创建好对象之后,其他线程即便再次进入同步代码块,由于已经创建好了实例对象,便直接返回即可。但是为什么还要在同步代码块的上一步再次去判断instance为空呢?这个是由于当我们创建好实例对象之后,直接去判断此实例对象是否为空,如果不为空,则直接返回就好了,就避免再次进去同步代码块了,提高了性能。
缺点:无法避免暴力反射创建对象。
备注:
此处的volatile发挥了内存可见性及防止指令重排序作用。
三、枚举实现单例
public enum SingletonEnum { INSTANCE; public static void main(String[] args) { System.out.println(SingletonEnum.INSTANCE == SingletonEnum.INSTANCE); } }
枚举实现单例是最为推荐的一种方法,因为就算通过序列化,反射等也没办法破坏单例性。(关于Android使用枚举会产生性能问题的说法,这应该是Android 2.x系统之前内存紧张的时代了,现在已经Android 13了,相信某些场合枚举所带来的便利远远大于这点所谓的性能影响)
1. Hungry Chinese Style
public static void main(String[] args) { SingleTon singleton1 = SingleTon.getInstance(); SingleTon singleton2 = null; try { Class<SingleTon> clazz = SingleTon.class; Constructor<SingleTon> constructor = clazz.getDeclaredConstructor(); constructor.setAccessible(true); singleton2 = constructor.newInstance(); } catch (Exception e) { e.printStackTrace(); } System.out.println("singleton1.hashCode():" + singleton1.hashCode()); System.out.println("singleton2.hashCode():" + singleton2.hashCode()); }
new SingleTon();
을 호출하면 객체의 인스턴스가 생성됩니다. 이후 인스턴스 객체의 사용 여부에 관계없이 메모리 공간을 차지하게 됩니다. 🎜2. 게으른 남자 스타일
singleton1.hashCode():1296064247 singleton2.hashCode():1637070917
멀티 스레드 환경에서 게으른 스타일의 다중 인스턴스 문제를 해결하는 방법은 무엇입니까?
🎜🎜🎜🎜🎜정적 내부 클래스🎜public class SingleTon { //创建唯一实例 private static volatile SingleTon instance = null; private SingleTon() { if (instance != null) { throw new RuntimeException("单例构造器禁止反射调用"); } } public static SingleTon getInstance() { if (instance == null) { synchronized (SingleTon.class) { if (instance == null) { instance = new SingleTon(); } } } return instance; } }
java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at com.imock.demo.TestUtil.testSingleInstance(TestUtil.java:45) at com.imock.demo.TestUtil.main(TestUtil.java:33) Caused by: java.lang.RuntimeException: 单例构造器禁止反射调用 at com.imock.demo.SingleTon.<init>(SingleTon.java:16) ... 6 more Exception in thread "main" java.lang.NullPointerException at com.imock.demo.TestUtil.testSingleInstance(TestUtil.java:49) at com.imock.demo.TestUtil.main(TestUtil.java:33) Process finished with exit code 1
여기서 동기화는 작업의 원자성과 메모리 가시성을 보장합니다.
🎜🎜🎜🎜🎜동기화된 코드 블록(이중 확인 잠금 모드 DCL)🎜public static void main(String[] args) { SingleTon singleton2 = null; try { Class<SingleTon> clazz = SingleTon.class; Constructor<SingleTon> constructor = clazz.getDeclaredConstructor(); constructor.setAccessible(true); singleton2 = constructor.newInstance(); } catch (Exception e) { e.printStackTrace(); } System.out.println("singleton2.hashCode():" + singleton2.hashCode()); SingleTon singleton1 = SingleTon.getInstance(); //调换了位置,在反射之后执行 System.out.println("singleton1.hashCode():" + singleton1.hashCode()); }
여기서 휘발성은 메모리 가시성과 명령 재정렬을 방지하는 역할을 합니다.
🎜🎜🎜🎜싱글톤 구현을 위한 열거형
singleton2.hashCode():1296064247 singleton1.hashCode():1637070917
(Android의 열거형 사용이 성능 문제를 일으킬 것이라는 진술과 관련하여 Android 2 이전에는 메모리 부족 시대가 되어야 합니다. 소위 성능 영향으로 인해)
🎜四、如何避免单例模式反射攻击
以最初的DCL为测试案例,看看如何进行反射攻击及又如何在一定程度上避免反射攻击。
反射攻击代码如下:
public static void main(String[] args) { SingleTon singleton1 = SingleTon.getInstance(); SingleTon singleton2 = null; try { Class<SingleTon> clazz = SingleTon.class; Constructor<SingleTon> constructor = clazz.getDeclaredConstructor(); constructor.setAccessible(true); singleton2 = constructor.newInstance(); } catch (Exception e) { e.printStackTrace(); } System.out.println("singleton1.hashCode():" + singleton1.hashCode()); System.out.println("singleton2.hashCode():" + singleton2.hashCode()); }
执行结果:
singleton1.hashCode():1296064247 singleton2.hashCode():1637070917
通过执行结果发现通过反射破坏了单例。 如何保证反射安全呢?只能以暴制暴,当已经存在实例的时候再去调用构造函数直接抛出异常,对构造函数做如下修改:
public class SingleTon { //创建唯一实例 private static volatile SingleTon instance = null; private SingleTon() { if (instance != null) { throw new RuntimeException("单例构造器禁止反射调用"); } } public static SingleTon getInstance() { if (instance == null) { synchronized (SingleTon.class) { if (instance == null) { instance = new SingleTon(); } } } return instance; } }
此时可防御反射攻击,抛出异常如下:
java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at com.imock.demo.TestUtil.testSingleInstance(TestUtil.java:45) at com.imock.demo.TestUtil.main(TestUtil.java:33) Caused by: java.lang.RuntimeException: 单例构造器禁止反射调用 at com.imock.demo.SingleTon.<init>(SingleTon.java:16) ... 6 more Exception in thread "main" java.lang.NullPointerException at com.imock.demo.TestUtil.testSingleInstance(TestUtil.java:49) at com.imock.demo.TestUtil.main(TestUtil.java:33) Process finished with exit code 1
然后我们把上述测试代码修改如下(调换了singleton1的初始化顺序)
:
public static void main(String[] args) { SingleTon singleton2 = null; try { Class<SingleTon> clazz = SingleTon.class; Constructor<SingleTon> constructor = clazz.getDeclaredConstructor(); constructor.setAccessible(true); singleton2 = constructor.newInstance(); } catch (Exception e) { e.printStackTrace(); } System.out.println("singleton2.hashCode():" + singleton2.hashCode()); SingleTon singleton1 = SingleTon.getInstance(); //调换了位置,在反射之后执行 System.out.println("singleton1.hashCode():" + singleton1.hashCode()); }
执行结果:
singleton2.hashCode():1296064247 singleton1.hashCode():1637070917
发现此防御未起到作用。
缺点:
- 如果反射攻击发生在正常调用getInstance之前,每次反射攻击都可以获取单例类的一个实例,因为即使私有构造器中使用了静态成员(instance) ,但单例对象并没有在类的初始化阶段被实例化,所以防御代码不生效,从而可以通过构造器的反射调用创建单例类的多个实例;
- 如果反射攻击发生在正常调用之后,防御代码是可以生效的;
如何避免序列化攻击?只需要修改反序列化的逻辑就可以了,即重写 readResolve()
方法,使其返回统一实例。
protected Object readResolve() { return getInstance(); }
脆弱不堪的单例模式经过重重考验,进化成了完全体,延迟加载,线程安全,反射及序列化安全。简易代码如下:
-
饿汉模式
public class SingleTon { private static SingleTon instance = new SingleTon(); private SingleTon() { if (instance != null) { throw new RuntimeException("单例构造器禁止反射调用"); } } public static SingleTon getInstance() { return instance; } }
로그인 후 복사 -
静态内部类
public class SingleTon { private static class InnerStaticClass{ private static SingleTon singleTon = new SingleTon(); } public SingleTon getInstance(){ return InnerStaticClass.singleTon; } private SingleTon() { if (InnerStaticClass.singleTon != null) { throw new RuntimeException("单例构造器禁止反射调用"); } } }
로그인 후 복사 -
懒汉模式
public class SingleTon { //创建唯一实例 private static SingleTon instance = null; private SingleTon() { if (instance != null) { throw new RuntimeException("单例构造器禁止反射调用"); } } public static SingleTon getInstance() { //延迟初始化 在第一次调用 getInstance 的时候创建对象 if (instance == null) { instance = new SingleTon(); } return instance; } }
로그인 후 복사缺点:
- 如果反射攻击发生在正常调用getInstance之前,每次反射攻击都可以获取单例类的一个实例,因为即使私有构造器中使用了静态成员(instance) ,但单例对象并没有在类的初始化阶段被实例化,所以防御代码不生效,从而可以通过构造器的反射调用创建单例类的多个实例;
- 如果反射攻击发生在正常调用之后,防御代码是可以生效的。
(枚举实现单例是最为推荐的一种方法,因为就算通过序列化,反射等也没办法破坏单例性,底层实现比如newInstance方法内部判断枚举抛异常)
推荐学习:《java视频教程》
위 내용은 자바 디자인 패턴의 싱글톤을 함께 분석해보자의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Java의 난수 생성기 안내. 여기서는 예제를 통해 Java의 함수와 예제를 통해 두 가지 다른 생성기에 대해 설명합니다.

Java의 Weka 가이드. 여기에서는 소개, weka java 사용 방법, 플랫폼 유형 및 장점을 예제와 함께 설명합니다.

Java의 Smith Number 가이드. 여기서는 정의, Java에서 스미스 번호를 확인하는 방법에 대해 논의합니다. 코드 구현의 예.

이 기사에서는 가장 많이 묻는 Java Spring 면접 질문과 자세한 답변을 보관했습니다. 그래야 면접에 합격할 수 있습니다.

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

Java의 TimeStamp to Date 안내. 여기서는 소개와 예제와 함께 Java에서 타임스탬프를 날짜로 변환하는 방법에 대해서도 설명합니다.

캡슐은 3 차원 기하학적 그림이며, 양쪽 끝에 실린더와 반구로 구성됩니다. 캡슐의 부피는 실린더의 부피와 양쪽 끝에 반구의 부피를 첨가하여 계산할 수 있습니다. 이 튜토리얼은 다른 방법을 사용하여 Java에서 주어진 캡슐의 부피를 계산하는 방법에 대해 논의합니다. 캡슐 볼륨 공식 캡슐 볼륨에 대한 공식은 다음과 같습니다. 캡슐 부피 = 원통형 볼륨 2 반구 볼륨 안에, R : 반구의 반경. H : 실린더의 높이 (반구 제외). 예 1 입력하다 반경 = 5 단위 높이 = 10 단위 산출 볼륨 = 1570.8 입방 단위 설명하다 공식을 사용하여 볼륨 계산 : 부피 = π × r2 × h (4
