목차
cmd 파일이란 무엇인가요?
MEMORY 및 SECTION
맞춤 세그먼트
일반적인 문제 Linux의 cmd 파일이란 무엇입니까?

Linux의 cmd 파일이란 무엇입니까?

Mar 07, 2023 am 10:27 AM
linux cmd 파일

Linux에서 cmd 파일은 링커의 구성 정보를 저장하는 링크 명령 파일이며 명령 파일이라고도 할 수 있습니다. cmd 파일의 기능은 프로그램을 링크하는 방법을 나타내는 것입니다. cmd 파일은 MEMORY와 SECTIONS의 두 부분으로 구성됩니다. MEMERY는 각 메모리 블록의 이름, 시작 주소 및 길이를 정의하는 데 사용됩니다. SECTIONS는 주로 어떤 세그먼트가 어떤 저장 공간 세그먼트에 매핑되는지 설명하는 데 사용됩니다.

Linux의 cmd 파일이란 무엇입니까?

이 튜토리얼의 운영 환경: linux7.3 시스템, Dell G3 컴퓨터.

cmd 파일이란 무엇인가요?

cmd 파일은 링커 명령 파일이며 접미사 .cmd로 끝납니다.

CMD의 전문명은 링커 구성 파일이며, 링커의 구성 정보를 저장하는 파일입니다. 줄여서 명령 파일이라고 합니다. 이름에서 알 수 있듯이 이 파일의 목적은 프로그램을 링크하는 방법을 지정하는 것입니다.

그러면 TI DSP 프로그램을 작성할 때 프로그램이 텍스트, bss 등과 같은 여러 세그먼트로 나눌 수 있고 각 세그먼트에는 서로 다른 역할이 있다는 것을 알 수 있습니다. 실제로 영화 속 달리는 장소도 다르다. 예를 들어, 텍스트 코드는 일반적으로 플래시에 배치해야 하고, bss 변수는 램에 배치해야 합니다. 등. 그러나 칩마다 각 메모리의 시작 주소와 끝 주소가 다릅니다. 또한 링커는 사용자가 특정 섹션, 특히 사용자 정의 섹션을 어느 메모리에 배치하려는지 알 수 없습니다. 사용할 칩의 내부 저장공간 할당과 프로그램 각 섹션의 구체적인 저장 위치를 ​​링커에게 알려주기 위해서는 구성 파일, 즉 CMD 파일을 작성해야 한다.

cmd 파일은 MEMORY(예: 메모리)와 SECTIONS(예: 세그먼트)의 두 부분으로 구성됩니다. MEMERY는 각 메모리 블록의 이름, 시작 주소 및 길이를 정의하는 데 사용됩니다. SECTIONS는 주로 어떤 세그먼트가 어떤 저장 공간 세그먼트에 매핑되는지 설명하는 데 사용됩니다. MEMORY는 PAGE0(프로그램 저장 공간)과 PAGE1(데이터 저장 공간), PAGE(즉, 프레임)로 구분할 수 있습니다.

위에 언급된 세그먼트는 초기화된 세그먼트와 초기화되지 않은 세그먼트의 두 가지 범주로 나눌 수 있습니다. 초기화된 세그먼트에는 실제 명령과 데이터가 포함되며 프로그램 메모리 공간에 저장됩니다. 초기화되지 않은 세그먼트는 변수의 주소 공간만 예약합니다. 초기화되지 않은 세그먼트에는 실제 내용이 없습니다. 데이터는 프로그램 실행 중에 변수에 기록되고 데이터 저장 공간에 저장됩니다. C 언어에는 ".text", ".const", ".system"과 같이 정의된 세그먼트가 많이 있습니다. 이렇게 정의된 세그먼트에 대해서는 인터넷에 설명이 많이 있으므로 여기서는 자세히 설명하지 않겠습니다. 다음으로 이 기사에서는 사용자로서 스스로 세그먼트를 정의하는 방법을 독자에게 소개합니다.

MEMORY 및 SECTION

댓글은 cmd 파일에 "/*"와 "*/"로 묶어서 작성할 수 있지만 "//"는 허용되지 않습니다. 이는 C 언어와 다릅니다.

cmd 파일을 작성하려면 두 개의 의사 명령어인 MEMORY와 SECTIONS(대문자로 표기해야 함)를 사용해야 합니다.

MEMORY와 SECTION의 구문은 온라인에서 찾을 수 있습니다. 이 글에서는 구체적인 예를 들어 MEMORY와 SECTION의 내용을 설명합니다.

저자가 사용한 F28335의 cmd 파일을 기준으로 MEMORY를 설명합니다.

MEMORY
{
PAGE 0:    /* Program Memory */
           /* Memory (RAM/FLASH/OTP) blocks can be moved to PAGE1 for data allocation */
 
   ZONE0       : origin = 0x004000, length = 0x001000     /* XINTF zone 0 */
   RAML0       : origin = 0x008000, length = 0x001000     /* on-chip RAM block L0 */
   RAML1       : origin = 0x009000, length = 0x001000     /* on-chip RAM block L1 */
   RAML2       : origin = 0x00A000, length = 0x001000     /* on-chip RAM block L2 */
   RAML3       : origin = 0x00B000, length = 0x001000     /* on-chip RAM block L3 */
   ZONE6       : origin = 0x0100000, length = 0x100000    /* XINTF zone 6 */ 
   ZONE7A      : origin = 0x0200000, length = 0x00FC00    /* XINTF zone 7 - program space */ 
   FLASHH      : origin = 0x300000, length = 0x008000     /* on-chip FLASH */
   FLASHG      : origin = 0x308000, length = 0x008000     /* on-chip FLASH */
   FLASHF      : origin = 0x310000, length = 0x008000     /* on-chip FLASH */
   FLASHE      : origin = 0x318000, length = 0x008000     /* on-chip FLASH */
   FLASHD      : origin = 0x320000, length = 0x008000     /* on-chip FLASH */
   FLASHC      : origin = 0x328000, length = 0x008000     /* on-chip FLASH */
   FLASHA      : origin = 0x338000, length = 0x007F80     /* on-chip FLASH */
   CSM_RSVD    : origin = 0x33FF80, length = 0x000076     /* Part of FLASHA.  Program with all 0x0000 when CSM is in use. */
   BEGIN       : origin = 0x33FFF6, length = 0x000002     /* Part of FLASHA.  Used for "boot to Flash" bootloader mode. */
   CSM_PWL     : origin = 0x33FFF8, length = 0x000008     /* Part of FLASHA.  CSM password locations in FLASHA */
   OTP         : origin = 0x380400, length = 0x000400     /* on-chip OTP */
   ADC_CAL     : origin = 0x380080, length = 0x000009     /* ADC_cal function in Reserved memory */
   
   IQTABLES    : origin = 0x3FE000, length = 0x000b50     /* IQ Math Tables in Boot ROM */
   IQTABLES2   : origin = 0x3FEB50, length = 0x00008c     /* IQ Math Tables in Boot ROM */  
   FPUTABLES   : origin = 0x3FEBDC, length = 0x0006A0     /* FPU Tables in Boot ROM */
   ROM         : origin = 0x3FF27C, length = 0x000D44     /* Boot ROM */        
   RESET       : origin = 0x3FFFC0, length = 0x000002     /* part of boot ROM  */
   VECTORS     : origin = 0x3FFFC2, length = 0x00003E     /* part of boot ROM  */
 
PAGE 1 :   /* Data Memory */
           /* Memory (RAM/FLASH/OTP) blocks can be moved to PAGE0 for program allocation */
           /* Registers remain on PAGE1                                                  */
   
   BOOT_RSVD   : origin = 0x000000, length = 0x000050     /* Part of M0, BOOT rom will use this for stack */
   RAMM0       : origin = 0x000050, length = 0x0003B0     /* on-chip RAM block M0 */
   RAMM1       : origin = 0x000400, length = 0x000400     /* on-chip RAM block M1 */
   RAML4       : origin = 0x00C000, length = 0x001000     /* on-chip RAM block L1 */
   RAML5       : origin = 0x00D000, length = 0x001000     /* on-chip RAM block L1 */
   RAML6       : origin = 0x00E000, length = 0x001000     /* on-chip RAM block L1 */
   RAML7       : origin = 0x00F000, length = 0x001000     /* on-chip RAM block L1 */
   ZONE7B      : origin = 0x20FC00, length = 0x000400     /* XINTF zone 7 - data space */
   FLASHB      : origin = 0x330000, length = 0x008000     /* on-chip FLASH */
}
로그인 후 복사

MEMORY에는 일반적으로 PAGE0과 PAGE1이 포함되어 있음을 알 수 있습니다. PAGE0의 RAML0은 시작 주소가 0x008000이고 저장 공간 길이가 0x001000인 저장 공간을 나타냅니다. 같은 방법으로 다른 저장공간 이름의 의미도 알 수 있다.

TI28335 칩 데이터 매뉴얼(일부만 발췌)을 비교해 보면, 위의 cmd 파일은 TI28335 칩 데이터 매뉴얼의 메모리 매핑 섹션을 기반으로 작성된 것을 알 수 있습니다. cmd 파일을 작성하려면 칩 데이터 매뉴얼의 메모리 매핑 섹션을 참조할 수도 있습니다.

Linux의 cmd 파일이란 무엇입니까?

다음으로 작성자는 SECTION에 포함된 내용을 설명합니다. F28335의 cmd 파일을 예로

SECTIONS
{
 
   /* Allocate program areas: */
   .cinit              : > FLASHA      PAGE = 0
   .pinit              : > FLASHA,     PAGE = 0
   .text               : > FLASHA      PAGE = 0
   codestart           : > BEGIN       PAGE = 0
   ramfuncs            : LOAD = FLASHD, 
                         RUN = RAML0, 
                         LOAD_START(_RamfuncsLoadStart),
                         LOAD_END(_RamfuncsLoadEnd),
                         RUN_START(_RamfuncsRunStart),
                         LOAD_SIZE(_RamfuncsLoadSize),
                         PAGE = 0
 
   csmpasswds          : > CSM_PWL     PAGE = 0
   csm_rsvd            : > CSM_RSVD    PAGE = 0
   
   /* Allocate uninitalized data sections: */
   .stack              : > RAMM1       PAGE = 1
   .ebss               : > RAML4       PAGE = 1
   .esysmem            : > RAMM1       PAGE = 1
 
   /* Initalized sections go in Flash */
   /* For SDFlash to program these, they must be allocated to page 0 */
   .econst             : > FLASHA      PAGE = 0
   .switch             : > FLASHA      PAGE = 0      
 
   /* Allocate IQ math areas: */
   IQmath              : > FLASHC      PAGE = 0                  /* Math Code */
   IQmathTables     : > IQTABLES,  PAGE = 0, TYPE = NOLOAD 
   
   /* Uncomment the section below if calling the IQNexp() or IQexp()
      functions from the IQMath.lib library in order to utilize the 
      relevant IQ Math table in Boot ROM (This saves space and Boot ROM 
      is 1 wait-state). If this section is not uncommented, IQmathTables2
      will be loaded into other memory (SARAM, Flash, etc.) and will take
      up space, but 0 wait-state is possible.
   */
   /*
   IQmathTables2    : > IQTABLES2, PAGE = 0, TYPE = NOLOAD 
   {
   
              IQmath.lib<IQNexpTable.obj> (IQmathTablesRam)
   
   }
   */
   
   FPUmathTables    : > FPUTABLES, PAGE = 0, TYPE = NOLOAD 
         
   /* Allocate DMA-accessible RAM sections: */
   DMARAML4         : > RAML4,     PAGE = 1
   DMARAML5         : > RAML5,     PAGE = 1
   DMARAML6         : > RAML6,     PAGE = 1
   DMARAML7         : > RAML7,     PAGE = 1
   
   /* Allocate 0x400 of XINTF Zone 7 to storing data */
   ZONE7DATA        : > ZONE7B,    PAGE = 1
 
   /* .reset is a standard section used by the compiler.  It contains the */ 
   /* the address of the start of _c_int00 for C Code.   /*
   /* When using the boot ROM this section and the CPU vector */
   /* table is not needed.  Thus the default type is set here to  */
   /* DSECT  */ 
   .reset              : > RESET,      PAGE = 0, TYPE = DSECT
   vectors             : > VECTORS     PAGE = 0, TYPE = DSECT
   
   /* Allocate ADC_cal function (pre-programmed by factory into TI reserved memory) */
   .adc_cal     : load = ADC_CAL,   PAGE = 0, TYPE = NOLOAD
 
}
로그인 후 복사

하면 SECTION에 다양한 섹션 이름이 포함되어 있음을 알 수 있습니다. ".text"를 예로 들면, ".text"는 컴파일 후 생성된 바이너리 명령어 코드 세그먼트이며, ".text"의 내용을 저장용으로 FLASHA에 할당하고 FLASHA는 MEMORY의 PAGE0에 있음을 알 수 있습니다.

SECTION의 ramfuncs는 28335의 시작과 관련이 있습니다. 그 본질은 전원을 켤 때 "부트스트랩"을 통해 FLASH에서 사용자 코드를 읽고 실행한 다음 RAM에 저장하고 RAM에서 실행하여 문제를 해결하는 것입니다. 느린 ROM 읽기 및 쓰기 속도로 인해 정전으로 인해 고속 스마트 칩 및 RAM의 데이터가 손실되는 문제를 해결하기가 어렵습니다.

맞춤 세그먼트

세그먼트에 대한 이 정보를 아는 것이 사용자에게 어떤 용도로 사용됩니까? 가장 직접적인 사용법은 컴파일러가 메모리 메모리가 부족하다는 메시지를 표시할 때 해당 세그먼트 이름을 통해 해당 저장 공간을 찾고 프로그램 요구 사항에 맞게 저장 공간의 크기를 수정할 수 있다는 것입니다. 세그먼트 이름을 사용자 정의하여 코드와 데이터를 저장할 수도 있습니다.

#pragma DATA_SECTION(함수 이름 또는 전역 변수 이름, "데이터 공간의 사용자 정의 섹션 이름") 또는 #pragma CODE_SECTION(함수 이름 또는 전역 변수 이름, "프로그램 공간의 사용자 정의 섹션 이름")을 전달합니다. 이름을 구현하여 저장 공간을 자유롭게 할당할 수 있습니다.

#pragma DATA_SECTION(변수용)

#pragma CODE_SECTION(用于函数)

但使用以上指令时需注意:不能在函数体内声明必须在定义和使用前声明,#pragma可以阻止对未调用的函数的优化。

下面结合实际使用例子来具体讲解:

#pragma DATA_SECTION(FFT_output, "FFT_buffer1");
float FFT_output[FFT_SIZE];
로그인 후 복사

笔者声明了一个数据段,段名为FFT_buffer1,段的内容在变量FFT_ouput里。而声明后才定义变量FFT_output的大小。

我们如果想要使用这个自定义的段,接下来我们还要在CMD文件的SECTION中指定FFT_buffer1的存储空间。

FFT_buffer1		: > RAML4,     PAGE = 1
로그인 후 복사

通过以上几条语句,笔者实现了将变量的内容存放入指定的RAML4存储空间的操作。

从上可以得出,当全局变量所占内存过大时,我们可以通过自定义段选择有所余裕的存储空间的方式,从而来解决内存不足的问题。

相关推荐:《Linux视频教程

위 내용은 Linux의 cmd 파일이란 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Centos와 Ubuntu의 차이 Centos와 Ubuntu의 차이 Apr 14, 2025 pm 09:09 PM

Centos와 Ubuntu의 주요 차이점은 다음과 같습니다. Origin (Centos는 Red Hat, Enterprise의 경우, Ubuntu는 Debian에서 시작하여 개인의 경우), 패키지 관리 (Centos는 안정성에 중점을 둡니다. Ubuntu는 APT를 사용하여 APT를 사용합니다), 지원주기 (Ubuntu는 5 년 동안 LTS 지원을 제공합니다), 커뮤니티에 중점을 둔다 (Centos Conciors on ubuntu). 튜토리얼 및 문서), 사용 (Centos는 서버에 편향되어 있으며 Ubuntu는 서버 및 데스크탑에 적합), 다른 차이점에는 설치 단순성 (Centos는 얇음)이 포함됩니다.

유지 보수를 중단 한 후 Centos의 선택 유지 보수를 중단 한 후 Centos의 선택 Apr 14, 2025 pm 08:51 PM

Centos는 중단되었으며 대안은 다음과 같습니다. 1. Rocky Linux (Best Compatibility); 2. Almalinux (Centos와 호환); 3. Ubuntu 서버 (구성 필수); 4. Red Hat Enterprise Linux (상업용 버전, 유료 라이센스); 5. Oracle Linux (Centos 및 Rhel과 호환). 마이그레이션시 고려 사항은 호환성, 가용성, 지원, 비용 및 커뮤니티 지원입니다.

Centos를 설치하는 방법 Centos를 설치하는 방법 Apr 14, 2025 pm 09:03 PM

CentOS 설치 단계 : ISO 이미지를 다운로드하고 부팅 가능한 미디어를 실행하십시오. 부팅하고 설치 소스를 선택하십시오. 언어 및 키보드 레이아웃을 선택하십시오. 네트워크 구성; 하드 디스크를 분할; 시스템 시계를 설정하십시오. 루트 사용자를 만듭니다. 소프트웨어 패키지를 선택하십시오. 설치를 시작하십시오. 설치가 완료된 후 하드 디스크에서 다시 시작하고 부팅하십시오.

Docker Desktop을 사용하는 방법 Docker Desktop을 사용하는 방법 Apr 15, 2025 am 11:45 AM

Docker Desktop을 사용하는 방법? Docker Desktop은 로컬 머신에서 Docker 컨테이너를 실행하는 도구입니다. 사용 단계는 다음과 같습니다. 1. Docker Desktop 설치; 2. Docker Desktop을 시작하십시오. 3. Docker 이미지를 만듭니다 (Dockerfile 사용); 4. Docker Image 빌드 (Docker 빌드 사용); 5. 도커 컨테이너를 실행하십시오 (Docker Run 사용).

Docker 원리에 대한 자세한 설명 Docker 원리에 대한 자세한 설명 Apr 14, 2025 pm 11:57 PM

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

VSCODE에 필요한 컴퓨터 구성 VSCODE에 필요한 컴퓨터 구성 Apr 15, 2025 pm 09:48 PM

대 코드 시스템 요구 사항 : 운영 체제 : Windows 10 이상, MacOS 10.12 이상, Linux 배포 프로세서 : 최소 1.6GHz, 권장 2.0GHz 이상의 메모리 : 최소 512MB, 권장 4GB 이상의 저장 공간 : 최소 250MB, 권장 1GB 및 기타 요구 사항 : 안정 네트워크 연결, Xorg/Wayland (LINUX)

Docker 이미지가 실패하면해야 할 일 Docker 이미지가 실패하면해야 할 일 Apr 15, 2025 am 11:21 AM

실패한 Docker 이미지 빌드에 대한 문제 해결 단계 : Dockerfile 구문 및 종속성 버전을 확인하십시오. 빌드 컨텍스트에 필요한 소스 코드 및 종속성이 포함되어 있는지 확인하십시오. 오류 세부 사항에 대한 빌드 로그를보십시오. -표적 옵션을 사용하여 계층 적 단계를 구축하여 실패 지점을 식별하십시오. 최신 버전의 Docker Engine을 사용하십시오. -t [image-name] : 디버그 모드로 이미지를 빌드하여 문제를 디버깅하십시오. 디스크 공간을 확인하고 충분한 지 확인하십시오. 빌드 프로세스에 대한 간섭을 방지하기 위해 Selinux를 비활성화하십시오. 커뮤니티 플랫폼에 도움을 요청하고 Dockerfiles를 제공하며보다 구체적인 제안을 위해 로그 설명을 구축하십시오.

Docker 프로세스를 보는 방법 Docker 프로세스를 보는 방법 Apr 15, 2025 am 11:48 AM

도커 프로세스보기 방법 : 1. Docker CLI 명령 : Docker PS; 2. Systemd Cli 명령 : SystemCTL 상태 Docker; 3. Docker Compose CLI 명령 : Docker-Compose PS; 4. 프로세스 탐색기 (Windows); 5. /Proc Directory (Linux).