集算器如何优化SQL计算(3)序运算_MySQL
跨行引用
早期SQL不直接支持跨行引用,要生成序号后再JOIN,极其繁琐困难。引入窗口函数后的SQL能够较方便地引用其它行数据,但写法仍不简洁,有多个跨行引用项时代码会很长。而且如前所述,窗口函数在其它运算结果集基础上再实施,对窗口函数计算值的再引用就要写成子查询的形式,仍然繁琐。
MySQL不支持窗口函数,但支持在SQL中使用变量,可以引用到前面的行,但无法引用到后面的行。
集算器提供了方便自然的跨行引用语法。
各产品月销售表结构为:产品、月份、销量;现要找出销量比上月多10%的记录。
|
A |
1 |
=db.query("select * from 销售表 order by 产品,月份") |
2 |
=A1.select(if(产品==产品[-1],销量/销量[-1])>1.1) |
排序后可以简单用[-1]就可以引用前一月的数据,且可以直接基于跨行计算值过滤。使用SQL窗口函数则要用子查询,MySQL则要定义两个临时变量。
再计算上表中各月前后一个月的销量移动平均值:
|
A |
1 |
=db.query("select * from 销售表 order by 产品,月份") |
2 |
=A1.derive(if(产品==产品[-1]&&产品==产品[1],销量{-1:1}.avg()):移动平均) |
计算移动平均涉及到向后引用和集合引用,用[1]可引用下一行数据,{-1:1}可引用从上一行到下一行的字段值集合。类似地,SQL窗口函数也需要子查询先把相应行计算出来再做移动平均;而MySQL的变量不能后向引用,就很难直接计算了。
再看一例,简化的事件表结构为:序号,时刻,…;时刻应当和序号同步递增,但可能有错误,需要找出时刻没有和序号同步递增的记录。
|
A |
|
1 |
=db.query("select * from 事件表 order by 序号") |
|
2 |
=A1.select(时刻!=max(时刻{:0})||时刻!=min(时刻{0:})) |
和前后所有记录对比 |
取集合时还可以从头取后或取到尾。SQL窗口函数也支持类似的写法,但两次比较要做两个不同方向的排序,当然了必须要用子查询。
有序分组
SQL只提供与次序无关的等值分组,但有时分组的键值并不能在每条记录中找到,而是和记录的次序有关,这种情况,用SQL又需要使用窗口函数(或其它更麻烦的手段)制造出序号才能实现。
集算器提供了与次序相关的分组机制,方便用于与连续区间相关的计算。
收支表结构为:月份、收入、支出;找出连续亏损达三月或以上的那些月份的记录。
|
A |
1 |
=db.query("select * from 收支表 order by 月份") |
2 |
=A1.group@o(收入>支出).select(~.收入 |
group@o表示在分组时只比较相邻记录,如果相邻值发生变化则会分出一个新组。这样就可以根据收入支出的比较把收支记录分成赢利、亏损、赢利、…这样的组,然后取出其中亏损且成员不少于3的组再合并起来。
还是这个表,希望计算收入最长连续增长了几个月。可以设计这样的分组机制:收入增长时和上月分作一个组,收入下降时则分出一个新组,最后统计组成员的最大值。
|
A |
1 |
=db.query("select * from 收支表 order by 月份") |
2 |
=A1.group@i(收入<收入[-1]).max(~.len()) |
group@i将在条件变化时分出一个新组,即收入降低时。
在窗口函数的支持下,SQL也能实现本例和上例的思路,但写法非常难懂。
区间合并也是常见的有序分组运算。设有事件发生区间表T有字段:S(开始时刻)、E(结束时刻);现在要将这些区间中重叠部分去除后再计算该事件实际发生的总时长。
| A |
|
1 | $select S,E from T order by S |
|
2 | =A1.select(E>max(E{:-1})) |
去除被包含的条目 |
3 |
=A2.run(max(S,E[-1]):S) |
去除重叠时间段 |
4 |
=A2.sum(interval@s(max(S,E[-1]),E)) |
计算总时长 |
5 |
=A2.run(if(S | 合并有重叠的时间段 |
这里给了多种目标的处理方法,充分利用了跨行运算和有序分组的特点。SQL要实现这种运算简单用窗口函数已经做不到了,需要用到很难理解的递归查询。
位置访问
对于有序的集合,有时我们需要直接用序号访问成员。SQL延用了数学上的无序集合概念,要生成序号再用条件过滤才能访问指定位置的成员,这对许多运算造成很大的麻烦。
集算器采用了有序集合机制,允许直接用序号访问成员,这类运算要方便得多。
比如经济统计中常用到的在众多价格中找出中位数:
| A |
1 | =db.query@i("select 价格 from T order by 价格") |
2 | =A1([(A1.len()+1)\2,A1.len()\2+1]).avg() |
位置还可以用于分组。事件表结构为:序号、时刻、动作,动作有开始、结束两种,现在要统计事件持续的总时长,即每一对开始和结束之间的时间之和。
| A |
1 | =db.query@i("select 时刻 from 事件表 order by 时刻") |
2 | =A1.group((#-1)\2).sum(interval@s(~(1),~(2)) |
#表示记录序号,group((#-1)\2)即将数据每两个分成一组,然后针对每组计算时长再合计即可。
根据位置还能进行相邻跨行引用。设有股价表结构为:交易日、收盘价;现列出计算出股价超过100元的交易日及当日涨幅。
| A |
1 | =db.query("select * from 股价表 order by 交易日") |
2 | =A1.pselect@a(收盘价>100).select(~>1) |
3 |
=A2.new(A1(~).交易日:交易日,A1(~).收盘价-A1(~-1).收盘价:涨幅) |
pselect函数将返回满足条件的成员位置,使用这些位置就可以方便地计算涨幅,而不必象使用窗口函数时事先计算出所有涨幅再过滤。
---恢复内容结束---
以上就是集算器如何优化SQL计算(3)序运算_MySQL的内容,更多相关内容请关注PHP中文网(www.php.cn)!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











빅 데이터 구조 처리 기술: 청킹(Chunking): 데이터 세트를 분할하고 청크로 처리하여 메모리 소비를 줄입니다. 생성기: 전체 데이터 세트를 로드하지 않고 데이터 항목을 하나씩 생성하므로 무제한 데이터 세트에 적합합니다. 스트리밍: 파일을 읽거나 결과를 한 줄씩 쿼리하므로 대용량 파일이나 원격 데이터에 적합합니다. 외부 저장소: 매우 큰 데이터 세트의 경우 데이터를 데이터베이스 또는 NoSQL에 저장합니다.

PHP에서 MySQL 데이터베이스를 백업하고 복원하는 작업은 다음 단계에 따라 수행할 수 있습니다. 데이터베이스 백업: mysqldump 명령을 사용하여 데이터베이스를 SQL 파일로 덤프합니다. 데이터베이스 복원: mysql 명령을 사용하여 SQL 파일에서 데이터베이스를 복원합니다.

선형 복잡성에서 로그 복잡성까지 조회 시간을 줄이는 인덱스를 구축하여 MySQL 쿼리 성능을 최적화할 수 있습니다. SQL 삽입을 방지하고 쿼리 성능을 향상하려면 PREPAREDStatements를 사용하세요. 쿼리 결과를 제한하고 서버에서 처리되는 데이터의 양을 줄입니다. 적절한 조인 유형 사용, 인덱스 생성, 하위 쿼리 사용 고려 등 조인 쿼리를 최적화합니다. 쿼리를 분석하여 병목 현상을 식별하고, 캐싱을 사용하여 데이터베이스 로드를 줄이고, 오버헤드를 최소화합니다.

MySQL 테이블에 데이터를 삽입하는 방법은 무엇입니까? 데이터베이스에 연결: mysqli를 사용하여 데이터베이스에 대한 연결을 설정합니다. SQL 쿼리 준비: 삽입할 열과 값을 지정하는 INSERT 문을 작성합니다. 쿼리 실행: query() 메서드를 사용하여 삽입 쿼리를 실행하면 확인 메시지가 출력됩니다.

PHP를 사용하여 MySQL 테이블을 생성하려면 다음 단계가 필요합니다. 데이터베이스에 연결합니다. 데이터베이스가 없으면 작성하십시오. 데이터베이스를 선택합니다. 테이블을 생성합니다. 쿼리를 실행합니다. 연결을 닫습니다.

PHP에서 MySQL 저장 프로시저를 사용하려면: PDO 또는 MySQLi 확장을 사용하여 MySQL 데이터베이스에 연결합니다. 저장 프로시저를 호출하는 문을 준비합니다. 저장 프로시저를 실행합니다. 결과 집합을 처리합니다(저장 프로시저가 결과를 반환하는 경우). 데이터베이스 연결을 닫습니다.

MySQL 8.4(2024년 최신 LTS 릴리스)에 도입된 주요 변경 사항 중 하나는 "MySQL 기본 비밀번호" 플러그인이 더 이상 기본적으로 활성화되지 않는다는 것입니다. 또한 MySQL 9.0에서는 이 플러그인을 완전히 제거합니다. 이 변경 사항은 PHP 및 기타 앱에 영향을 미칩니다.

Oracle 데이터베이스와 MySQL은 모두 관계형 모델을 기반으로 하는 데이터베이스이지만 호환성, 확장성, 데이터 유형 및 보안 측면에서 Oracle이 우수하고, MySQL은 속도와 유연성에 중점을 두고 중소 규모 데이터 세트에 더 적합합니다. ① Oracle은 광범위한 데이터 유형을 제공하고, ② 고급 보안 기능을 제공하고, ③ 엔터프라이즈급 애플리케이션에 적합하고, ① MySQL은 NoSQL 데이터 유형을 지원하고, ② 보안 조치가 적고, ③ 중소 규모 애플리케이션에 적합합니다.
