목차
AI: 엣지로 이동
알고리즘을 개발하는 동안 하드웨어 테스트
IoT 데이터는 빅 데이터와 같지 않습니다.
하드웨어 개발은 ​​충분히 어렵습니다.
새로운 엣지 AI 소프트웨어를 구축, 검증하고 프로덕션에 적용
기술 주변기기 일체 포함 엣지 AI를 사용하여 새로운 기회를 발견하는 방법은 무엇입니까?

엣지 AI를 사용하여 새로운 기회를 발견하는 방법은 무엇입니까?

Apr 04, 2023 pm 12:55 PM
사물의 인터넷 일체 포함 엣지 컴퓨팅

스타트업과 대기업 모두에게 새롭고 혁신적인 기술에 전념하는 것은 현재와 미래의 경쟁력을 보장하는 데 매우 중요합니다. 인공지능(AI)은 점점 더 다양한 산업에 다각적인 솔루션을 제공합니다.

엣지 AI를 사용하여 새로운 기회를 발견하는 방법은 무엇입니까?

현재의 경제 상황에서는 R&D에 대한 자금이 그 어느 때보다 더 전액 지원되어야 합니다. 기업은 미래 기술과 인프라에 대한 투자에 대해 확신을 갖지 못하는 경우가 많으며, 실패 위험은 프로젝트 이해관계자에게 엄청난 부담을 안겨줍니다.

그러나 이것이 혁신이 중단되거나 심지어 느려져야 한다는 의미는 아닙니다. 스타트업과 대기업 모두에게 새롭고 혁신적인 기술에 전념하는 것은 현재와 미래의 경쟁력을 보장하는 데 매우 중요합니다. 인공지능(AI)은 점점 더 다양한 산업에 다각적인 솔루션을 제공합니다.

지난 10년 동안 인공 지능은 완전히 새로운 수익 기회를 창출하는 데 중요한 역할을 해왔습니다. 사용자 행동을 이해하고 예측하는 것부터 코드와 콘텐츠 생성 지원에 이르기까지 인공 지능과 기계 학습(ML) 혁명은 소비자가 앱, 웹 사이트, 온라인 서비스에서 얻는 가치를 기하급수적으로 증가시켰습니다.

그러나 이러한 혁명은 거의 무제한의 스토리지 및 컴퓨팅과 주요 퍼블릭 클라우드 서비스 제공업체의 편리한 가상 하드웨어를 통해 모든 AI/ML 애플리케이션에 대한 모범 사례를 확립할 수 있는 클라우드로 크게 제한되었습니다. 패턴이 상대적으로 쉬워집니다. 상상하다.

AI: 엣지로 이동

AI 처리는 주로 클라우드에서 이루어지기 때문에 AI/ML 혁명은 엣지 기기에서는 아직 도달할 수 없습니다. 이는 공장 현장, 건설 현장, 연구실, 자연 보호 구역, 우리가 입는 액세서리 및 의류, 배송 패키지 내부 및 연결이 필요한 기타 모든 환경에서 발견되는 더 작고 저전력 프로세서입니다. , 그리고 에너지는 제한되어 있거나 당연하게 여겨질 수 없습니다. 해당 환경에서는 컴퓨팅 주기와 하드웨어 아키텍처가 중요하며 예산은 엔드포인트나 소켓 연결 수가 아닌 와트와 나노초 단위로 측정됩니다.

AI/ML의 차세대 기술 장벽을 무너뜨리려는 CTO, 엔지니어링, 데이터 및 기계 학습 리더, 제품 팀은 우위를 점해야 합니다. Edge AI와 Edge ML은 시스템 통합, 설계, 운영 및 물류부터 임베디드, 데이터, IT 및 ML 엔지니어링에 이르는 광범위한 전문 지식을 갖춘 많은 이해관계자의 세심한 조정과 참여가 필요한 독특하고 복잡한 과제를 제시합니다.

Edge AI는 알고리즘이 고급 게이트웨이 또는 로컬 서버부터 저가형 에너지 수확 센서 및 MCU에 이르기까지 일종의 특정 목적 하드웨어에서 실행되어야 함을 의미합니다. 이러한 제품 및 애플리케이션의 성공을 보장하려면 데이터 및 ML 팀이 제품 및 하드웨어 팀과 긴밀히 협력하여 서로의 요구 사항, 제약 조건 및 요구 사항을 이해하고 고려해야 합니다.

맞춤형 엣지 AI 솔루션을 구축하는 과제는 극복할 수 없는 것이 아니지만 필요한 팀 간의 격차를 해소하고 더 ​​짧은 시간에 더 높은 수준의 성공을 보장하며 추가 투자 방향을 검증하는 데 도움이 될 수 있는 엣지 AI 알고리즘 개발을 위한 플랫폼이 존재합니다. 만들어지다. 주목해야 할 다른 사항은 다음과 같습니다.

알고리즘을 개발하는 동안 하드웨어 테스트

데이터 과학 및 ML 팀이 알고리즘을 개발한 다음 이를 펌웨어 엔지니어에게 전달하여 장치에 설치하도록 하는 것은 효율적이지도 않고 항상 가능하지도 않습니다. Hardware-in-the-loop 테스트 및 배포는 모든 엣지 AI 개발 파이프라인의 기본 부분이어야 합니다. 하드웨어에서 알고리즘을 동시에 실행하고 테스트할 수 있는 방법이 없으면 엣지 AI 알고리즘을 개발할 때 발생할 수 있는 메모리, 성능 및 지연 시간 제한을 예측하기 어렵습니다.

일부 클라우드 기반 모델 아키텍처는 모든 유형의 제한된 장치 또는 에지 장치에서 실행되도록 설계되지 않았으므로 미리 예측하면 펌웨어와 ML 팀 모두 수개월의 고통을 줄일 수 있습니다.

IoT 데이터는 빅 데이터와 같지 않습니다.

빅 데이터는 분석하여 패턴이나 추세를 밝힐 수 있는 대규모 데이터 세트를 의미합니다. 그러나 사물인터넷(IoT) 데이터는 반드시 양이 아니라 데이터의 질이 중요합니다. 또한 이 데이터는 시계열 센서, 오디오 데이터 또는 이미지일 수 있으며 전처리가 필요할 수 있습니다.

디지털 신호 처리(DSP)와 같은 기존 센서 데이터 처리 기술을 AI/ML과 결합하면 이전 기술에서는 불가능했던 정확한 통찰력을 제공하는 새로운 엣지 AI 알고리즘을 생성할 수 있습니다. 하지만 IoT 데이터는 빅데이터가 아니기 때문에 엣지 AI 개발에 사용되는 데이터 세트의 양과 분석은 다양할 것입니다. 결과적인 모델 정확도와 성능을 기반으로 데이터 세트 크기와 품질을 신속하게 실험하는 것은 프로덕션 배포 가능한 알고리즘으로 가는 길에서 중요한 단계입니다.

하드웨어 개발은 ​​충분히 어렵습니다.

선택한 하드웨어가 엣지 AI 소프트웨어 워크로드를 실행할 수 있는지 여부를 알지 못한 채 하드웨어를 구축하는 것은 어렵습니다. BOM을 선택하기 전에 하드웨어 벤치마킹을 시작하는 것이 중요합니다. 기존 하드웨어의 경우 장치에서 사용할 수 있는 메모리의 제한이 더 중요할 수 있습니다.

초기의 작은 데이터 세트라도 엣지 AI 개발 플랫폼은 AI 워크로드를 실행하는 데 필요한 하드웨어 유형에 대한 성능 및 메모리 추정치를 제공하기 시작할 수 있습니다.

장치 선택을 평가하고 초기 버전의 엣지 AI 모델을 벤치마킹하는 프로세스를 갖추면 장치에서 실행될 필수 펌웨어 및 AI 모델을 지원하기 위한 하드웨어 지원이 마련됩니다.

새로운 엣지 AI 소프트웨어를 구축, 검증하고 프로덕션에 적용

개발 플랫폼을 선택할 때 다양한 공급업체에서 제공하는 엔지니어링 지원도 고려해 볼 가치가 있습니다. Edge AI는 데이터 과학, ML, 펌웨어 및 하드웨어를 포괄하며 공급업체가 내부 개발 팀에 추가 지원이 필요할 수 있는 영역에 지침을 제공하는 것이 중요합니다.

어떤 경우에는 개발될 실제 모델보다는 데이터 인프라, ML 개발 도구, 테스트, 배포 환경 및 지속적인 통합, 지속적인 배포(CI)를 포함한 시스템 수준 설계 프로세스의 계획에 대한 것이 더 중요합니다. /CD) 파이프.

마지막으로, 에지 AI 개발 도구는 ML 엔지니어부터 펌웨어 개발자까지 팀의 다양한 사용자를 수용하는 것이 중요합니다. 로우 코드/노코드 사용자 인터페이스는 신속하게 새로운 애플리케이션을 프로토타이핑하고 구축할 수 있는 좋은 방법이며, API 및 SDK는 Jupyter 노트북에서 Python을 사용하여 더 빠르고 효율적으로 작업할 수 있는 숙련된 ML 개발자에게 유용합니다.

이 플랫폼은 최첨단 AI 애플리케이션을 구축하는 다기능 팀에 존재할 수 있는 여러 이해관계자 또는 개발자의 요구 사항을 충족하면서 액세스 유연성이라는 이점을 제공합니다.

위 내용은 엣지 AI를 사용하여 새로운 기회를 발견하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. Aug 01, 2024 pm 09:40 PM

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

See all articles