일반적으로 사용되는 Golang 동시 프로그래밍 기술에 대해 이야기해 보겠습니다.
Golang은 효율적인 고성능 병렬 및 분산 프로그램을 구축하는 데 널리 사용되는 프로그래밍 언어입니다. 동시 프로그래밍을 쉽게 사용할 수 있으면서 간단하고 가벼운 구문이라는 장점이 있습니다.
Golang에서는 고루틴과 채널을 사용하여 동시 프로그래밍을 구현하는 것이 인기 있는 방법입니다. 고루틴은 Golang 고유의 경량 스레드로 단일 스레드에서 동시에 여러 작업을 실행할 수 있으며 작업이 차단되지 않을 때 오버헤드 없이 전환할 수 있습니다. 채널은 여러 고루틴이 협력하여 작업 간 데이터 전송 및 동기화를 완료할 수 있도록 하는 동기화 기본 요소입니다.
일반적으로 사용되는 Golang 동시 프로그래밍 기술을 살펴보겠습니다.
1. goroutine을 사용하여 동시성을 달성합니다.
Golang의 Goroutine은 함수 호출 앞에 "go" 키워드만 추가하면 됩니다. 고루틴으로 바꿔보세요. 예:
func main() { //启动一个新的goroutine go func() { fmt.Println("Hello World") }() //在这里继续执行其他任务 //... }
위 코드는 다른 스레드에서 "Hello World"를 인쇄하고 동시에 주 함수가 계속 실행됩니다. 고루틴을 사용하면 프로그램의 동시성과 응답 속도를 크게 향상시킬 수 있습니다.
2. 채널을 사용하여 데이터 동기화 달성
Golang의 채널은 데이터를 전송하고 여러 고루틴 간에 동기화하는 데 사용되는 동기화 기본 요소입니다. 채널은 두 개의 고루틴 간에 통신을 설정할 수 있습니다. 메시지를 보내고 받는 방법에는 차단과 비차단이 있습니다.
다음은 채널을 사용하여 데이터를 전송하는 간단한 예입니다.
func main() { //创建一个整数类型的channel ch := make(chan int) //启动一个goroutine发送数据 go func() { ch <- 123 //发送数据到channel中 }() //接收刚刚发送的数据 num := <- ch //从channel中接收数据 fmt.Println(num) //输出:123 }
위 코드에서는 먼저 정수형 채널을 생성합니다. 그런 다음 고루틴이 시작되어 데이터를 보내고, 데이터는 메인 스레드의 채널에서 수신되어 출력됩니다. 채널은 서로 다른 고루틴 간에 데이터를 전송하고 동기화하는 데 사용될 수 있습니다.
3. 동기화 패키지를 사용하여 동기화
sync는 Mutex, RWMutex, Cond, Once, WaitGroup 등을 포함한 Golang의 동기화 기본 요소 모음입니다. 더 높은 수준의 동기화 및 스레드 안전 제어를 달성하는 데 사용할 수 있습니다.
Mutex는 공유 리소스를 보호하는 데 사용되는 뮤텍스 잠금입니다. 중요 섹션에 접근하기 전에 Lock() 함수를 사용하여 뮤텍스를 획득하고, 접근이 완료된 후 Unlock() 함수를 사용하여 잠금을 해제합니다.
다음은 Mutex를 사용하여 구현된 스레드로부터 안전한 카운터의 예입니다.
import ( "fmt" "sync" ) type Counter struct { count int mu sync.Mutex } func (c *Counter) Increment() { //获取互斥锁并增加计数 c.mu.Lock() c.count++ c.mu.Unlock() } func (c *Counter) Count() int { //获取互斥锁并返回计数 c.mu.Lock() defer c.mu.Unlock() return c.count } func main() { //创建一个计数器 c := Counter{} //启动多个goroutine增加计数 for i := 0; i < 1000; i++ { go c.Increment() } //等待所有goroutine执行完成 time.Sleep(time.Second) //输出计数器的值 fmt.Println(c.Count()) }
위 코드에서는 Mutex를 사용하여 카운터 공유 리소스를 보호하고 여러 고루틴이 동시에 실행될 때 스레드 안전성을 보장합니다.
4. 컨텍스트 패키지를 사용하여 시간 초과 제어 구현
Golang에서 컨텍스트는 고루틴 하위 트리의 동작을 제어하는 데 사용되는 전이 컨텍스트입니다(Java의 ThreadLocal과 유사).
컨텍스트 패키지는 고루틴 컨텍스트 관리를 시작하는 데 사용할 수 있는 WithCancel(), WithDeadline(), WithTimeout() 등과 같은 일부 기능을 제공합니다. 이러한 함수는 새 컨텍스트 개체와 컨텍스트를 취소해야 할 때 컨텍스트를 취소된 것으로 표시하기 위해 호출할 수 있는 함수를 반환합니다. 고루틴에서는 취소 신호를 얻기 위해 Context의 Done() 채널을 사용할 수 있습니다.
다음은 컨텍스트를 사용하여 구현된 타임아웃 제어의 예입니다.
import ( "fmt" "context" ) func main() { //创建一个带超时的上下文 ctx, cancel := context.WithTimeout(context.Background(), time.Second) //执行一个耗时任务 go func() { time.Sleep(time.Second * 2) fmt.Println("Goroutine Done") }() //等待上下文取消信号 select { case <-ctx.Done(): fmt.Println("Timeout") } //取消上下文 cancel() }
위 코드에서는 먼저 1초 타임아웃을 갖는 컨텍스트를 생성하고 2초가 걸리는 고루틴을 시작한 다음 메인 함수에서 대기합니다. 취소 신호가 수신되면 컨텍스트의 Done() 채널과 "Timeout"을 출력합니다.
5. 경쟁 중에 sync/atomic을 사용하여 원자 연산 구현
Golang에서 sync/atomic 패키지는 경쟁 중에 공유 정수 또는 포인터 값을 업데이트하는 데 사용할 수 있는 몇 가지 원자 연산 기능을 제공합니다. 원자적 연산을 사용하면 여러 고루틴이 동시에 실행될 때 경쟁 조건을 피할 수 있습니다.
다음은 16진수 카운터를 출력하기 위해 sync/atomic 패키지를 사용하여 구현한 원자 연산의 예입니다.
import ( "fmt" "sync/atomic" ) func main() { //定义一个uint32的计数器 var counter uint32 //启动多个goroutine更新计数器 for i := 0; i < 1000; i++ { go func() { //原子地增加计数器 atomic.AddUint32(&counter, 1) }() } //等待所有goroutine执行完成 time.Sleep(time.Second) //输出计数器的值 fmt.Printf("0x%x\n", atomic.LoadUint32(&counter)) }
위 코드에서는 uint32 유형 카운터를 정의하고 AddUint32() 함수를 사용하여 여러 개의 카운터를 동시에 실행합니다. 고루틴은 실행될 때 원자적으로 카운트를 증가시킵니다. 마지막으로 카운터의 16진수 값이 출력됩니다.
요약:
Golang의 동시 프로그래밍은 고루틴, 채널, 동기화 등의 도구 기능을 사용하여 스레드 간의 협업과 통신을 쉽게 구현할 수 있으며 동시성이 있다는 특징을 가지고 있습니다. 프로그램의 응답 속도가 향상될 수 있습니다. 동시에 스레드 안전 문제를 방지하려면 동기화 메커니즘을 사용하는 데 주의를 기울여야 합니다.
위 내용은 일반적으로 사용되는 Golang 동시 프로그래밍 기술에 대해 이야기해 보겠습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











보안 통신에 널리 사용되는 오픈 소스 라이브러리로서 OpenSSL은 암호화 알고리즘, 키 및 인증서 관리 기능을 제공합니다. 그러나 역사적 버전에는 알려진 보안 취약점이 있으며 그 중 일부는 매우 유해합니다. 이 기사는 데비안 시스템의 OpenSSL에 대한 일반적인 취약점 및 응답 측정에 중점을 둘 것입니다. DebianopensSL 알려진 취약점 : OpenSSL은 다음과 같은 몇 가지 심각한 취약점을 경험했습니다. 심장 출혈 취약성 (CVE-2014-0160) :이 취약점은 OpenSSL 1.0.1 ~ 1.0.1F 및 1.0.2 ~ 1.0.2 베타 버전에 영향을 미칩니다. 공격자는이 취약점을 사용하여 암호화 키 등을 포함하여 서버에서 무단 읽기 민감한 정보를 사용할 수 있습니다.

이 기사는 프로파일 링 활성화, 데이터 수집 및 CPU 및 메모리 문제와 같은 일반적인 병목 현상을 식별하는 등 GO 성능 분석을 위해 PPROF 도구를 사용하는 방법을 설명합니다.

이 기사는 GO에서 단위 테스트 작성, 모범 사례, 조롱 기술 및 효율적인 테스트 관리를위한 도구를 다루는 것에 대해 논의합니다.

이 기사는 단위 테스트를 위해 이동 중에 모의와 스터브를 만드는 것을 보여줍니다. 인터페이스 사용을 강조하고 모의 구현의 예를 제공하며 모의 집중 유지 및 어설 션 라이브러리 사용과 같은 모범 사례에 대해 설명합니다. 기사

이 기사에서는 GO의 제네릭에 대한 사용자 정의 유형 제약 조건을 살펴 봅니다. 인터페이스가 일반 함수에 대한 최소 유형 요구 사항을 정의하여 유형 안전 및 코드 재사성을 향상시키는 방법에 대해 자세히 설명합니다. 이 기사는 또한 한계와 모범 사례에 대해 설명합니다

이 기사는 코드의 런타임 조작, 직렬화, 일반 프로그래밍에 유리한 런타임 조작에 사용되는 GO의 반사 패키지에 대해 설명합니다. 실행 속도가 느리고 메모리 사용이 높아짐, 신중한 사용 및 최고와 같은 성능 비용을 경고합니다.

이 기사는 추적 도구를 사용하여 GO 응용 프로그램 실행 흐름을 분석합니다. 수동 및 자동 계측 기술, Jaeger, Zipkin 및 OpenTelemetry와 같은 도구 비교 및 효과적인 데이터 시각화를 강조합니다.

이 기사는 테스트 케이스 테이블을 사용하여 여러 입력 및 결과로 기능을 테스트하는 방법 인 GO에서 테이블 중심 테스트를 사용하는 것에 대해 설명합니다. 가독성 향상, 중복 감소, 확장 성, 일관성 및 A와 같은 이점을 강조합니다.
