기술 주변기기 일체 포함 제한된 리소스로 모델 효율성을 향상시키는 방법은 무엇입니까? 효율적인 NLP 방법을 요약한 기사

제한된 리소스로 모델 효율성을 향상시키는 방법은 무엇입니까? 효율적인 NLP 방법을 요약한 기사

Apr 08, 2023 pm 12:51 PM
모델 능률

더 큰 규모의 딥 러닝 모델을 훈련하는 것은 지난 10년 동안 새로운 트렌드가 되었습니다. 아래 그림에서 볼 수 있듯이 모델 매개변수 수가 지속적으로 증가하면 신경망의 성능이 점점 더 좋아지고 새로운 연구 방향도 생성되지만 모델에는 점점 더 많은 문제가 발생합니다.

제한된 리소스로 모델 효율성을 향상시키는 방법은 무엇입니까? 효율적인 NLP 방법을 요약한 기사

우선, 이러한 유형의 모델은 액세스가 제한되는 경우가 많고 오픈 소스가 아니거나, 오픈 소스라 하더라도 실행하려면 여전히 많은 컴퓨팅 리소스가 필요합니다. 둘째, 이러한 네트워크 모델의 매개변수는 보편적이지 않으므로 훈련 및 파생에 많은 양의 리소스가 필요합니다. 셋째, 매개변수의 크기가 하드웨어에 의해 제한되기 때문에 모델을 무한정 확장할 수 없습니다. 이러한 문제를 해결하기 위해 효율성 향상에 초점을 맞춘 새로운 연구 동향이 등장하고 있습니다.

최근에는 히브리대학교, 워싱턴대학교 및 기타 기관의 12명 이상의 연구자들이 자연어 처리(NLP) 분야의 효율적인 방법을 요약한 리뷰를 공동으로 작성했습니다.

제한된 리소스로 모델 효율성을 향상시키는 방법은 무엇입니까? 효율적인 NLP 방법을 요약한 기사

문서 주소: https://arxiv.org/pdf/2209.00099.pdf

효율성은 일반적으로 시스템에 투입된 자원과 시스템 출력 사이의 관계를 의미합니다. 효율적인 시스템은 자원을 덜 낭비할 수 있습니다. 출력을 생성합니다. NLP 분야에서 우리는 효율성을 모델 비용과 모델이 생성하는 결과 간의 관계로 생각합니다.

제한된 리소스로 모델 효율성을 향상시키는 방법은 무엇입니까? 효율적인 NLP 방법을 요약한 기사

식 (1)은 특정 결과를 생성하기 위한 인공 지능 모델의 훈련 비용(Cost)을 설명하며(R)은 세 가지(불완전한) 요소에 비례합니다.

(1) 단일 샘플에서 모델에서 모델을 실행하는 비용(E)

(2) 훈련 데이터 세트의 크기(D)

(3) 모델 선택 또는 매개변수 조정에 필요한 훈련 실행 횟수(H) .

비용 비용(·)은 계산, 시간 또는 환경 비용과 같은 여러 차원을 따라 측정할 수 있으며 각 차원은 다양한 방법으로 추가로 정량화될 수 있습니다. 예를 들어 계산 비용에는 총 부동 소수점 연산(FLOP) 수 또는 모델 매개변수 수가 포함될 수 있습니다. 단일 비용 지표를 사용하는 것은 오해의 소지가 있을 수 있으므로 이 연구에서는 효율적인 NLP의 여러 측면에 대한 작업을 수집 및 구성하고 어떤 측면이 어떤 사용 사례에 유익한지 논의합니다.

본 연구는 NLP 효율성을 향상시키기 위한 다양한 방법에 대한 기본 소개를 제공하는 것을 목표로 하므로 본 연구는 일반적인 NLP 모델 파이프라인(아래 그림 2)에 따라 이번 설문조사를 구성하고 각 단계를 보다 효율적으로 만들기 위한 기존 방법을 소개합니다. .

제한된 리소스로 모델 효율성을 향상시키는 방법은 무엇입니까? 효율적인 NLP 방법을 요약한 기사

이 작업은 주로 두 가지 유형의 독자를 대상으로 NLP 연구자에게 실용적인 효율성 가이드를 제공합니다.

(1) NLP의 다양한 분야의 연구자가 자원이 제한된 환경에서 작업할 수 있도록 지원: 자원 병목 현상에 따라 다름 , 독자는 NLP 파이프라인이 다루는 측면으로 직접 이동할 수 있습니다. 예를 들어 주요 제한 사항이 추론 시간인 경우 논문의 6장에서는 관련 효율성 향상에 대해 설명합니다.

(2) NLP 방법의 현재 효율성 상태를 개선하는 데 관심이 있는 연구원. 이 논문은 새로운 연구 방향에 대한 기회를 식별하는 출발점이 될 수 있습니다.

아래 그림 3은 본 연구에서 요약한 효율적인 NLP 방법을 개략적으로 보여줍니다.

제한된 리소스로 모델 효율성을 향상시키는 방법은 무엇입니까? 효율적인 NLP 방법을 요약한 기사

또한 하드웨어 선택이 모델의 효율성에 큰 영향을 미치지만 대부분의 NLP 연구원은 하드웨어에 대한 결정을 직접적으로 제어하지 않으며 대부분의 하드웨어 최적화는 NLP 파이프라인의 모든 단계에 적용되지 않습니다. . 효과가있다. 따라서 본 연구에서는 알고리즘에 대한 작업에 중점을 두지만 7장에서는 하드웨어 최적화에 대한 간략한 소개를 제공합니다. 마지막으로, 효율성을 정량화하는 방법, 평가 과정에서 고려해야 할 요소, 가장 적합한 모델을 결정하는 방법에 대해 자세히 논의합니다.

관심 있는 독자는 논문의 원문을 읽고 더 많은 연구 세부 사항을 알아볼 수 있습니다.

위 내용은 제한된 리소스로 모델 효율성을 향상시키는 방법은 무엇입니까? 효율적인 NLP 방법을 요약한 기사의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. 중국의 기능은 GPT-4와 비슷하며 가격은 GPT-4-Turbo의 거의 1%에 불과합니다. 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. 중국의 기능은 GPT-4와 비슷하며 가격은 GPT-4-Turbo의 거의 1%에 불과합니다. May 07, 2024 pm 04:13 PM

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI가 수학적 연구를 전복시킨다! 필즈상 수상자이자 중국계 미국인 수학자, Terence Tao가 좋아하는 11개 논문 발표 | AI가 수학적 연구를 전복시킨다! 필즈상 수상자이자 중국계 미국인 수학자, Terence Tao가 좋아하는 11개 논문 발표 | Apr 09, 2024 am 11:52 AM

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Apr 01, 2024 pm 07:46 PM

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

MLP를 대체하는 KAN은 오픈소스 프로젝트를 통해 컨볼루션으로 확장되었습니다. MLP를 대체하는 KAN은 오픈소스 프로젝트를 통해 컨볼루션으로 확장되었습니다. Jun 01, 2024 pm 10:03 PM

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

FisheyeDetNet: 어안 카메라를 기반으로 한 최초의 표적 탐지 알고리즘 FisheyeDetNet: 어안 카메라를 기반으로 한 최초의 표적 탐지 알고리즘 Apr 26, 2024 am 11:37 AM

표적 탐지는 자율주행 시스템에서 상대적으로 성숙한 문제이며, 그 중 보행자 탐지는 가장 먼저 배포되는 알고리즘 중 하나입니다. 대부분의 논문에서 매우 포괄적인 연구가 수행되었습니다. 그러나 서라운드 뷰를 위한 어안 카메라를 사용한 거리 인식은 상대적으로 덜 연구되었습니다. 큰 방사형 왜곡으로 인해 표준 경계 상자 표현은 어안 카메라에서 구현하기 어렵습니다. 위의 설명을 완화하기 위해 확장된 경계 상자, 타원 및 일반 다각형 디자인을 극/각 표현으로 탐색하고 인스턴스 분할 mIOU 메트릭을 정의하여 이러한 표현을 분석합니다. 제안된 다각형 형태의 모델 fisheyeDetNet은 다른 모델보다 성능이 뛰어나며 동시에 자율 주행을 위한 Valeo fisheye 카메라 데이터 세트에서 49.5% mAP를 달성합니다.

공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! 공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! May 06, 2024 pm 04:13 PM

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

단일 카드는 듀얼 카드보다 Llama를 70B 더 빠르게 실행합니다. Microsoft는 A100에 FP6을 넣었습니다 | 단일 카드는 듀얼 카드보다 Llama를 70B 더 빠르게 실행합니다. Microsoft는 A100에 FP6을 넣었습니다 | Apr 29, 2024 pm 04:55 PM

FP8 이하의 부동 소수점 수량화 정밀도는 더 이상 H100의 "특허"가 아닙니다! Lao Huang은 모든 사람이 INT8/INT4를 사용하기를 원했고 Microsoft DeepSpeed ​​팀은 NVIDIA의 공식 지원 없이 A100에서 FP6을 실행하기 시작했습니다. 테스트 결과에 따르면 A100에 대한 새로운 방법 TC-FPx의 FP6 양자화는 INT4에 가깝거나 때로는 더 빠르며 후자보다 정확도가 더 높은 것으로 나타났습니다. 또한 오픈 소스로 제공되고 DeepSpeed와 같은 딥 러닝 추론 프레임워크에 통합된 엔드투엔드 대규모 모델 지원도 있습니다. 이 결과는 대형 모델 가속화에도 즉각적인 영향을 미칩니다. 이 프레임워크에서는 단일 카드를 사용하여 Llama를 실행하면 처리량이 듀얼 카드보다 2.65배 더 높습니다. 하나

See all articles