목차
반복에 대한 생각: 방법론 및 ML Ops
실패는 성공의 어머니
기술 주변기기 일체 포함 실패한 AI 프로젝트를 분석하면 무엇을 배울 수 있나요?

실패한 AI 프로젝트를 분석하면 무엇을 배울 수 있나요?

Apr 08, 2023 pm 06:21 PM
기계 학습 ai

AI 프로젝트의 실패는 큰 문제와는 관련이 없지만 작은 세부 사항에 의해 결정되는 경우가 많습니다. 모든 흥미로운 가능성에 직면한 기업은 AI 프로젝트를 처음 시작할 때 자신감이 넘치는 경우가 많습니다. 그러나 구체적인 구현 과정에서 실질적인 문제가 발생하면 이러한 열정이 쉽게 식어 AI 프로젝트가 보류되거나 궁극적으로 실패할 수도 있습니다. 실패를 일으키는 일반적인 문제 중 하나는 조직이 프로젝트의 장기적인 비용을 정확하게 고려하지 않는다는 것입니다. 경영진은 프로젝트의 초기 비용만 계산했을 뿐, 이후의 유지 관리 및 업데이트 비용에는 신경을 쓰지 않았습니다.

연구 회사인 Cognilytica는 수백 개의 실패한 AI 프로젝트를 종합적으로 분석한 결과 많은 조직이 AI 프로젝트 수명 주기의 연속성을 인식하지 못하고 있다는 사실을 깨달았습니다. 조직에서는 데이터 준비, 정리, 모델 교육, 데이터 라벨링, 모델 평가, 반복 요구 사항 등 프로젝트의 처음 몇 번의 반복에만 예산을 할당하지만 지속적인 반복에 대한 예산을 유지하지 못하는 경우가 많습니다. 또한 조직은 모델 및 데이터 부패를 지속적으로 모니터링하고 필요에 따라 모델을 재교육하며 향후 추가 확장 및 반복을 고려해야 합니다. 시간이 지남에 따라 이는 필연적으로 AI 프로젝트에 대한 조직의 예상 투자 수익에 편차나 심지어 불균형을 초래할 것입니다.

실패한 AI 프로젝트를 분석하면 무엇을 배울 수 있나요?

모델의 지속적인 반복에 드는 비용을 고려할 때 다들 어떤 사고 과정을 거쳤나요? 대부분의 조직이 직면한 과제는 AI 프로젝트를 일회성 개념 증명 또는 파일럿 애플리케이션으로 보는 경향이 있으며, 모델의 지속적인 평가 및 재교육을 위해 자금, 자원 및 인력의 일부를 따로 확보하는 것을 고려하지 않는다는 것입니다. 그러나 일반적인 데이터 기반 프로젝트인 AI는 결코 일회성 투자가 아닙니다. 사람들은 모델이 일단 생산되면 모델의 반복과 개발을 위해 자금, 자원, 인력을 계속 할당해야 한다는 사실을 깨닫지 못할 수도 있습니다.

그래서 모델 구축 비용만 고려하는 조직은 프로젝트가 시작된 후 다양한 문제에 직면하게 됩니다. AI 프로젝트 비용과 투자 수익을 예로 들면, AI 프로젝트 소유자는 모델을 유지하는 데 드는 비용과 후속 데이터 준비 및 모델 반복에 얼마나 많은 리소스를 투자할 의향이 있는지 주의를 기울여야 합니다.

성공적인 AI 프로젝트의 공통점 중 하나는 기능이 한꺼번에 전달되지 않는다는 점입니다. 이와 대조적으로 성공적인 프로젝트에서는 AI 솔루션을 명확한 시작점과 끝점이 없는 지속적인 반복 주기로 간주합니다. 사이버 보안 프로젝트가 일회성 프로젝트가 아닌 것처럼 AI와 같은 데이터 기반 프로젝트도 변화하는 현실과 변화하는 데이터에 적응할 수 있도록 지속적으로 운영되어야 합니다. 데이터 드리프트와 모델 드리프트는 불가피하므로 처음에는 잘 작동하는 모델이라도 시간이 지남에 따라 점차적으로 실패할 수 있습니다. 또한 조직 자체가 발전함에 따라 AI 애플리케이션에 대한 전문 지식과 기술, 활용 사례, 모델 및 데이터가 계속 업데이트되고 변경될 것입니다.

게다가 세계 경제와 세계 구조도 예상치 못한 방향으로 변동하고 있습니다. 결과적으로 극도로 복잡한 AI 프로젝트를 포함한 모든 장기 계획 프로젝트는 그에 따라 필연적으로 조정을 수행해야 합니다. 소매업체는 확실히 지난 2년 동안 발생한 공급망 및 노동 시장 혼란을 예상할 수 없었고, 조직도 재택근무로의 급격한 전환을 예상할 수 없었습니다. 현실 세계와 사용자 행동의 급격한 변화는 필연적으로 데이터의 변화로 이어질 것이므로 모델도 변경되어야 합니다. 이 때문에 데이터 드리프트와 모델 드리프트를 모두 고려하여 모델을 지속적으로 모니터링하고 반복해야 합니다.

반복에 대한 생각: 방법론 및 ML Ops

조직이 모델을 확장하거나 개선할 계획을 세울 때 원래 모델 반복 메커니즘과도 일치해야 합니다. 예를 들어, 북미 기업이 구매 패턴 예측 모델을 다른 시장으로 확장하려는 경우 새로운 데이터 요구 사항에 적응하기 위해 모델과 데이터를 지속적으로 반복해야 합니다.

이러한 요소는 모델이 데이터 소스 및 기타 주요 요소를 올바르게 식별할 수 있도록 조직이 반복을 위한 추가 자금을 지속적으로 제공해야 함을 의미합니다. AI 분야에서 성공한 조직은 AI 프로젝트 확장을 성공적으로 완료하기 위해 경험적으로 입증된 반복적이고 민첩한 방법을 따라야 한다는 점도 인식하고 있습니다. 민첩한 방법론과 데이터 중심 프로젝트 관리 아이디어를 바탕으로 CRISP-DM(Cross-Industry Data Mining Process Standard) 등은 반복 프로젝트가 특정 핵심 단계를 놓치지 않도록 AI 기능을 강화하기 시작했습니다.

AI 시장의 지속적인 발전과 함께 'ML Ops'라는 신흥 머신러닝 모델 운영관리도 주목받기 시작했습니다. ML Ops는 모델 개발 및 사용, 기계 학습 운영 및 배포의 전체 수명 주기에 중점을 둡니다. ML Ops 방법 및 솔루션은 조직이 지속적으로 진화하는 공간에서 AI 모델을 관리하고 모니터링하는 데 도움이 되도록 설계되었습니다. ML Ops는 DevOps의 개발 중심 프로젝트 지속적인 반복/개발 아이디어와 끊임없이 변화하는 대규모 데이터 세트에 대한 DataOps의 관리 경험을 완전히 흡수하여 거대 기업의 어깨 위에 서 있다고도 할 수 있습니다.

ML Ops의 목표는 조직에 모델 드리프트, 모델 거버넌스, 버전 제어 등의 가시성 지침을 제공하여 AI 프로젝트 반복을 지원하는 것입니다. ML Ops는 모든 사람이 이러한 문제를 더 잘 관리하는 데 도움이 될 수 있습니다. 현재 시장에는 다양한 ML Ops 도구가 넘쳐나지만, ML Ops도 DevOps와 마찬가지로 생각 없이 문제를 해결하기 위해 돈을 쓰기보다는 조직이 스스로 일을 한다는 점을 주로 강조합니다. Ml Ops 모범 사례는 모델 거버넌스, 버전 제어, 검색, 모니터링, 투명성, 모델 보안/반복과 같은 일련의 측면을 다룹니다. ML Ops 솔루션은 동일한 모델의 여러 버전을 동시에 지원하여 특정 요구 사항에 따라 동작을 맞춤 설정할 수도 있습니다. 또한 이러한 솔루션은 엄격한 거버넌스 및 보안 관리 원칙을 보장하면서 누가 어떤 모델에 액세스할 수 있는지 추적, 모니터링 및 결정합니다.

AI 반복의 실제 요구 사항을 고려하여 ML Ops는 전체 모델 구축 및 관리 환경에서 중요한 부분이 되기 시작했습니다. 앞으로 이러한 기능은 전체 AI 및 ML 도구 세트의 일부가 될 것으로 예상되며 클라우드 솔루션, 오픈 소스 제품 및 ML 기계 학습 플랫폼과 같은 애플리케이션 시나리오에 점차적으로 포함될 것으로 예상됩니다.

실패는 성공의 어머니

ML Ops 및 AI 프로젝트의 성공은 모범 사례에 대한 지원 및 지도와 분리될 수 없습니다. 문제로 인해 AI 프로젝트가 실패하지는 않습니다. 문제를 정확하게 해결하지 못하는 것이 실패의 근본 원인입니다. 조직은 AI 프로젝트를 반복적이고 단계별인 프로세스로 보고 CPMAI(Cognitive Project Management for AI) 방법과 진화하는 ML Ops 도구를 통해 자신에게 적합한 모범 사례를 완전히 탐색해야 합니다. 크게 생각하고 작게 시작하세요. 지속적인 반복 개념은 AI 프로젝트의 전체 수명 주기에 걸쳐 실행되어야 합니다. 이러한 실패는 결코 이야기의 끝이 아니라 새로운 시작입니다.

위 내용은 실패한 AI 프로젝트를 분석하면 무엇을 배울 수 있나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Worldcoin (WLD) 가격 예측 2025-2031 : WLD가 2031 년까지 4 달러에 도달 할 것인가? Worldcoin (WLD) 가격 예측 2025-2031 : WLD가 2031 년까지 4 달러에 도달 할 것인가? Apr 21, 2025 pm 02:42 PM

Worldcoin (WLD)은 Cryptocurrency 시장에서 고유 한 생체 인정 및 개인 정보 보호 메커니즘으로 눈에 띄고 많은 투자자의 관심을 끌고 있습니다. WLD는 혁신적인 기술, 특히 OpenAi 인공 지능 기술과 함께 Altcoins에서 뛰어난 성과를 거두었습니다. 그러나 향후 몇 년 안에 디지털 자산은 어떻게 행동 할 것인가? WLD의 미래 가격을 함께 예측합시다. 2025 WLD 가격 예측은 2025 년 WLD에서 상당한 성장을 달성 할 것으로 예상됩니다. 시장 분석에 따르면 평균 WLD 가격은 최대 $ 1.36로 $ 1.31에 도달 할 수 있습니다. 그러나 곰 시장에서 가격은 약 $ 0.55로 떨어질 수 있습니다. 이러한 성장 기대는 주로 WorldCoin2에 기인합니다.

'Black Monday Sell'은 Cryptocurrency 업계의 힘든 날입니다. 'Black Monday Sell'은 Cryptocurrency 업계의 힘든 날입니다. Apr 21, 2025 pm 02:48 PM

cryptocurrency 시장의 급락으로 인해 투자자들 사이에 공황이 발생했으며 Dogecoin (Doge)은 가장 어려운 지역 중 하나가되었습니다. 가격은 급격히 하락했으며 분산 금융 (DEFI) (TVL)의 총 가치 잠금 장치도 크게 감소했습니다. "Black Monday"의 판매 물결은 cryptocurrency 시장을 휩쓸었고 Dogecoin은 처음으로 타격을 받았습니다. DefitVl은 2023 년 수준으로 떨어졌고 지난 달 통화 가격은 23.78% 하락했습니다. Dogecoin의 Defitvl은 주로 SOSO 가치 지수의 26.37% 감소로 인해 272 만 달러로 떨어졌습니다. 지루한 Dao 및 Thorchain과 같은 다른 주요 Defi 플랫폼도 TVL도 각각 24.04% 및 20으로 떨어졌습니다.

크로스 체인 거래는 무엇을 의미합니까? 크로스 체인 거래는 무엇입니까? 크로스 체인 거래는 무엇을 의미합니까? 크로스 체인 거래는 무엇입니까? Apr 21, 2025 pm 11:39 PM

크로스 체인 거래를 지원하는 교환 : 1. Binance, 2. Uniswap, 3. Sushiswap, 4. Curve Finance, 5. Thorchain, 6. 1inch Exchange, 7. DLN 거래,이 플랫폼은 다양한 기술을 통해 다중 체인 자산 거래를 지원합니다.

Binance 전체 프로세스 전략에 대한 커널 에어 드롭 보상을받는 방법 Binance 전체 프로세스 전략에 대한 커널 에어 드롭 보상을받는 방법 Apr 21, 2025 pm 01:03 PM

암호 화폐의 번화 한 세계에서는 새로운 기회가 항상 나타납니다. 현재 Kerneldao (Kernel) 에어 드롭 활동은 많은 관심을 끌고 많은 투자자들의 관심을 끌고 있습니다. 그렇다면이 프로젝트의 기원은 무엇입니까? BNB 보유자는 어떤 이점을 얻을 수 있습니까? 걱정하지 마십시오. 다음은 당신을 위해 하나씩 공개 할 것입니다.

가상 통화 가격의 상승 또는 하락은 왜입니까? 가상 통화 가격의 상승 또는 하락은 왜입니까? 가상 통화 가격의 상승 또는 하락은 왜입니까? 가상 통화 가격의 상승 또는 하락은 왜입니까? Apr 21, 2025 am 08:57 AM

가상 통화 가격 상승의 요인은 다음과 같습니다. 1. 시장 수요 증가, 2. 공급 감소, 3. 긍정적 인 뉴스, 4. 낙관적 시장 감정, 5. 거시 경제 환경; 감소 요인에는 다음이 포함됩니다. 1. 시장 수요 감소, 2. 공급 증가, 3. 부정적인 뉴스의 파업, 4. 비관적 시장 감정, 5. 거시 경제 환경.

Web3 Trading Platform Ranking_Web3 글로벌 교환 상위 10 개 요약 Web3 Trading Platform Ranking_Web3 글로벌 교환 상위 10 개 요약 Apr 21, 2025 am 10:45 AM

Binance는 Global Digital Asset Trading Ecosystem의 대 군주이며, 그 특성에는 다음이 포함됩니다. 1. 평균 일일 거래량은 1,500 억 달러를 초과하여 주류 통화의 98%를 차지하며 500 개의 거래 쌍을 지원합니다. 2. 혁신 매트릭스는 파생 상품 시장, Web3 레이아웃 및 교육 시스템을 포함합니다. 3. 기술적 이점은 밀리 초에 일치하는 엔진이며, 최고 처리량은 초당 140 만 건의 트랜잭션입니다. 4. 규정 준수 진행 상황은 15 개국 라이센스를 보유하고 있으며 유럽과 미국에 준수 엔티티를 설립합니다.

통화에서 레버리지 교환 순위 순위 서클 통화 서클에서 상위 10 개의 레버리지 거래소의 최신 권장 사항 통화에서 레버리지 교환 순위 순위 서클 통화 서클에서 상위 10 개의 레버리지 거래소의 최신 권장 사항 Apr 21, 2025 pm 11:24 PM

2025 년에 레버리지 거래, 보안 및 사용자 경험에서 뛰어난 성능을 보이는 플랫폼은 다음과 같습니다. 1. OKX, 고주파 거래자에게 적합하여 최대 100 배의 레버리지를 제공합니다. 2. Binance, 전 세계의 다중 통화 거래자에게 적합하며 125 배 높은 레버리지를 제공합니다. 3. Gate.io, 전문 파생 상품 플레이어에게 적합하며 100 배의 레버리지를 제공합니다. 4. 초보자 및 소셜 트레이더에게 적합한 Bitget, 최대 100 배의 레버리지를 제공합니다. 5. 크라켄은 꾸준한 투자자에게 적합하며 5 배의 레버리지를 제공합니다. 6. Bybit, Altcoin Explorers에 적합하며 20 배의 레버리지를 제공합니다. 7. 저비용 거래자에게 적합한 Kucoin, 10 배의 레버리지를 제공합니다. 8. 비트 피 넥스, 시니어 플레이에 적합합니다

Aavenomics는 AAVE 프로토콜 토큰을 수정하고 쿼럼 수의 사람들에게 도달 한 토큰 재구매를 소개하는 권장 사항입니다. Aavenomics는 AAVE 프로토콜 토큰을 수정하고 쿼럼 수의 사람들에게 도달 한 토큰 재구매를 소개하는 권장 사항입니다. Apr 21, 2025 pm 06:24 PM

Aavenomics는 AAVE 프로토콜 토큰을 수정하고 Aavedao의 쿼럼을 구현 한 Token Repos를 소개하는 제안입니다. AAVE 프로젝트 체인 (ACI)의 설립자 인 Marc Zeller는 X에서 이것을 발표하여 계약의 새로운 시대를 표시한다고 지적했습니다. AAVE 체인 이니셔티브 (ACI)의 설립자 인 Marc Zeller는 AAVENOMICS 제안서에 AAVE 프로토콜 토큰 수정 및 토큰 리포지션 도입이 포함되어 있다고 X에서 AAVEDAO에 대한 쿼럼을 달성했다고 발표했습니다. Zeller에 따르면, 이것은 계약의 새로운 시대를 나타냅니다. Aavedao 회원국은 수요일에 주당 100 인 제안을지지하기 위해 압도적으로 투표했습니다.

See all articles