목차
Cross Validation
기술 주변기기 일체 포함 기계 학습 하이퍼파라미터 튜닝 요약(PySpark ML)

기계 학습 하이퍼파라미터 튜닝 요약(PySpark ML)

Apr 08, 2023 pm 07:21 PM
기계 학습 매개변수 동조

ML의 중요한 작업은 모델 선택, 즉 데이터를 사용하여 주어진 작업에 가장 적합한 모델이나 매개변수를 찾는 것입니다. 이것을 튜닝이라고도 합니다. LogisticRegression과 같은 단일 추정기 또는 여러 알고리즘, 특성화 및 기타 단계를 포함하는 전체 파이프라인을 조정할 수 있습니다. 사용자는 파이프라인의 각 요소를 개별적으로 튜닝하는 대신 전체 파이프라인을 한 번에 튜닝할 수 있습니다.

ML에서 중요한 작업은 모델 선택, 즉 데이터를 사용하여 주어진 작업에 가장 적합한 모델이나 매개변수를 찾는 것입니다. 이것을 튜닝이라고도 합니다. 단일 Estimator(예: LogisticRegression)를 조정하거나 여러 알고리즘, 특성화 및 기타 단계를 포함하는 전체 파이프라인을 조정할 수 있습니다. 사용자는 파이프라인의 각 요소를 개별적으로 튜닝하는 대신 전체 파이프라인을 한 번에 튜닝할 수 있습니다.

MLlib는 CrossValidator 및 TrainValidationSplit과 같은 도구를 사용하여 모델 선택을 지원합니다. 이러한 도구에는 다음이 필요합니다.

  • Estimator: 조정할 알고리즘 또는 파이프라인
  • 매개변수 세트: 검색의 "매개변수 그리드"라고도 하는 선택 가능한 매개변수 세트
  • Evaluator: 메트릭 적합 모델 성능 테스트 데이터

이러한 모델 선택 도구의 작동 방식은 다음과 같습니다.

  • 입력 데이터를 별도의 훈련 및 테스트 데이터 세트로 분할합니다.
  • 각 (훈련, 테스트) 쌍에 대해 ParamMap 컬렉션을 순회합니다.

각 ParamMap​에 대해 이러한 매개변수를 사용하여 Estimator​에 적합하고, 적합한 모델​을 얻은 다음, Evaluator​를 사용하여 성능을 평가합니다. 모델.

  • 최고 성능의 매개변수 세트로 생성할 모델을 선택합니다.

파라메트릭 그리드 구성을 돕기 위해 사용자는 ParamGridBuilder를 사용할 수 있습니다. 기본적으로 매개변수 그리드의 매개변수 세트는 순차적으로 계산됩니다. CrossValidator 또는 TrainValidationSplit을 사용하여 모델 선택을 실행하기 전에 병렬도를 2 이상(1의 값은 직렬임)으로 설정하여 매개변수 평가를 병렬로 수행할 수 있습니다. 클러스터 리소스를 초과하지 않고 병렬성을 최대화하려면 병렬성 값을 신중하게 선택해야 합니다. 값이 커진다고 해서 반드시 성능이 향상되는 것은 아닙니다. 일반적으로 대부분의 클러스터에는 10보다 큰 값이면 충분합니다.

Cross Validation

CrossValidator Cross Validator는 먼저 데이터 세트를 별도의 훈련 및 테스트 데이터 세트로 사용되는 접힌 데이터 세트 세트로 분할합니다. 예를 들어, k=3회일 때 CrossValidator는 3쌍의 (훈련, 테스트) 데이터 세트를 생성하며, 각 데이터 세트 쌍은 훈련용 데이터의 2/3, 테스트용 데이터의 1/3을 사용합니다. 특정 ParamMap을 평가하기 위해 CrossValidator는 Estimator에서 생성된 3개 모델을 3개의 서로 다른(훈련, 테스트) 데이터 세트 쌍에 맞춰 평균 평가 지표를 계산합니다.

최고의 ParamMap을 결정한 후 CrossValidator는 최종적으로 최고의 ParamMap과 전체 데이터 세트를 사용하여 Estimator를 다시 일치시킵니다.

from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder

# 准备训练文件,并做好标签。
training = spark.createDataFrame([
(0, "a b c d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0),
(4, "b spark who", 1.0),
(5, "g d a y", 0.0),
(6, "spark fly", 1.0),
(7, "was mapreduce", 0.0),
(8, "e spark program", 1.0),
(9, "a e c l", 0.0),
(10, "spark compile", 1.0),
(11, "hadoop software", 0.0)
], ["id", "text", "label"])

# 配置一个ML管道,它由树stages组成:tokenizer、hashingTF和lr。
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=10)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

# 我们现在将Pipeline作为一个Estimator,将其包装在CrossValidator实例中。
# 这将允许我们共同选择所有管道阶段的参数。
# 交叉验证器需要一个Estimator、一组Estimator ParamMaps和一个Evaluator。
# 我们使用ParamGridBuilder来构造一个用于搜索的参数网格。
# hashingTF.numFeatures 的3个值, lr.regParam的2个值,
# 这个网格将有3 x 2 = 6的参数设置供CrossValidator选择。

 
paramGrid = ParamGridBuilder() 
.addGrid(hashingTF.numFeatures, [10, 100, 1000]) 
.addGrid(lr.regParam, [0.1, 0.01]) 
.build()

crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(),
numFolds=2)# 使用3+ folds

# 运行交叉验证,并选择最佳参数集。
cvModel = crossval.fit(training)

# 准备测试未标注的文件
test = spark.createDataFrame([
(4, "spark i j k"),
(5, "l m n"),
(6, "mapreduce spark"),
(7, "apache hadoop")
], ["id", "text"])

# 对测试文档进行预测, cvModel使用发现的最佳模型(lrModel)。
prediction = cvModel.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():
print(row)
로그인 후 복사

Train Validation Split

Spark는 CrossValidator 외에도 하이퍼파라미터 튜닝을 위한 TrainValidationSplit도 제공합니다. TrainValidationSplit은 CrossValidator의 경우 k번 계산하는 것과 달리 각 매개변수 조합을 한 번만 계산합니다. 따라서 비용은 저렴하지만 훈련 데이터 세트가 충분히 크지 않으면 신뢰할 수 있는 결과를 생성하지 않습니다.

CrossValidator와 달리 TrainValidationSplit은 단일(열차, 테스트) 데이터 세트 쌍을 생성합니다. trainRatio 매개변수를 사용하여 데이터세트를 이 두 부분으로 분할합니다. 예를 들어 trainRatio=0.75인 경우 TrainValidationSplit은 훈련에 사용되는 데이터의 75%와 검증에 사용되는 데이터의 25%로 훈련 및 테스트 데이터세트 쌍을 생성합니다.

CrossValidator와 마찬가지로 TrainValidationSplit은 궁극적으로 전체 데이터 세트에 대해 최고의 ParamMap 및 일치 Estimator를 사용합니다.

from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.regression import LinearRegression
from pyspark.ml.tuning import ParamGridBuilder, TrainValidationSplit

# Prepare training and test data.
data = spark.read.format("libsvm")
.load("data/mllib/sample_linear_regression_data.txt")
train, test = data.randomSplit([0.9, 0.1], seed=12345)

lr = LinearRegression(maxIter=10)

# 我们使用ParamGridBuilder来构造一个用于搜索的参数网格。
# TrainValidationSplit将尝试所有值的组合,并使用评估器确定最佳模型。
paramGrid = ParamGridBuilder()
.addGrid(lr.regParam, [0.1, 0.01]) 
.addGrid(lr.fitIntercept, [False, True])
.addGrid(lr.elasticNetParam, [0.0, 0.5, 1.0])
.build()

# 在这种情况下,估计器是简单的线性回归。
# TrainValidationSplit需要一个Estimator、一组Estimator ParamMaps 和一个 Evaluator。
tvs = TrainValidationSplit(estimator=lr,
 estimatorParamMaps=paramGrid,
 evaluator=RegressionEvaluator(),
 # 80%的数据将用于培训,20%用于验证。
 trainRatio=0.8)

# 运行TrainValidationSplit,并选择最佳参数集。
model = tvs.fit(train)

# 对测试数据进行预测。模型是参数组合后性能最好的模型。
model.transform(test)
.select("features", "label", "prediction")
.show()
로그인 후 복사

위 내용은 기계 학습 하이퍼파라미터 튜닝 요약(PySpark ML)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. 이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. Jun 01, 2024 am 10:58 AM

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

학습 곡선을 통해 과적합과 과소적합 식별 학습 곡선을 통해 과적합과 과소적합 식별 Apr 29, 2024 pm 06:50 PM

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

우주탐사 및 인간정주공학 분야 인공지능의 진화 우주탐사 및 인간정주공학 분야 인공지능의 진화 Apr 29, 2024 pm 03:25 PM

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

설명 가능한 AI: 복잡한 AI/ML 모델 설명 설명 가능한 AI: 복잡한 AI/ML 모델 설명 Jun 03, 2024 pm 10:08 PM

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

C++ 함수 매개변수 유형 안전성 확인 C++ 함수 매개변수 유형 안전성 확인 Apr 19, 2024 pm 12:00 PM

C++ 매개변수 유형 안전성 검사는 함수가 컴파일 시간 검사, 런타임 검사 및 정적 어설션을 통해 예상된 유형의 값만 허용하도록 보장하여 예기치 않은 동작 및 프로그램 충돌을 방지합니다. 컴파일 시간 유형 검사: 컴파일러가 유형 호환성을 검사합니다. 런타임 유형 검사: 동적_캐스트를 사용하여 유형 호환성을 확인하고 일치하는 항목이 없으면 예외를 발생시킵니다. 정적 어설션: 컴파일 타임에 유형 조건을 어설션합니다.

Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. May 30, 2024 pm 01:24 PM

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

See all articles