목차
심리측정 분석을 위한 인공지능과 빅데이터 활용
심리측정학의 인공지능과 빅데이터 응용 분야
1. 후보자 모집
2. 선거 활동
3. 제품 및 서비스 마케팅
심리측정학에서 빅데이터 사용의 어려움
기술 주변기기 일체 포함 심리분석에 인공지능과 빅데이터 활용

심리분석에 인공지능과 빅데이터 활용

Apr 08, 2023 pm 10:51 PM
일체 포함 빅데이터 심리측정학

심리측정 분석을 위한 인공지능과 빅데이터 활용

인공지능(AI)과 빅데이터는 채용 담당자가 개인의 성격과 행동 스타일을 더 잘 이해하는 데 도움이 될 수 있습니다.

심리분석에 인공지능과 빅데이터 활용

아마도 빅데이터의 가장 큰 수혜자는 인공지능 분야일 것입니다.

이 두 기술을 결합하면 심리 측정 분석을 한 단계 더 발전시킬 수 있습니다. 심리측정학에서 인공지능과 빅데이터의 영향을 연구하는 것은 이 분야의 향후 발전을 위해 매우 중요할 것입니다.

심리측정 평가가 영향을 미칠 수 있는 영역의 수는 정말 놀랍습니다. 채용 중 구직자 평가부터 국가 캠페인 실행, 마케팅에서 법 집행에 이르기까지 심리 측정 평가는 대규모 집단의 맥박이나 개인의 성격 특성을 이해하는 데 중요한 역할을 합니다. 정당이든 기업이든 조직이 심리측정학의 빅데이터 기능을 완전히 활용한다면 각 전장에서 거의 난공불락의 이점을 얻을 수 있습니다.

심리측정학의 인공지능과 빅데이터 응용 분야

우리 모두가 알고 있듯이 디지털화는 사람들의 삶의 거의 모든 측면에 침투하고 있습니다. 따라서 인공지능, 빅데이터 등의 기술이 심리측정학 분야에 자연스럽게 영향을 미치게 될 것입니다. 인공지능의 놀라운 데이터 처리 및 분석 능력은 오늘날 잘 알려져 있습니다. 이러한 속성을 빅 데이터의 포괄적인 특성과 결합하는 것은 심리 측정학의 성장과 발전을 위한 로켓 연료를 제공하는 것과 같습니다. 인공 지능과 빅 데이터가 심리 측정학에서 무엇(또는 어느 정도)을 달성할 수 있는지 궁금하십니까? 다음은 몇 가지 답변입니다.

1. 후보자 모집

과거 심리 테스트에서는 이러한 목적으로 종종 로지스틱 회귀 분석을 사용했습니다. 이러한 기술에는 장점이 있지만 이 분야에서 인공 지능(빅 데이터로 보완)의 성과와 비교할 수는 없습니다. 예를 들어 HR 리더는 머신러닝을 사용하여 후보자의 강점과 약점을 식별할 수 있습니다. 이를 위해 HR 리더는 면접이나 원격 면접 중에 후보자에게 일련의 질문을 합니다. 응시자가 질문에 답변하면 태도, 말투, 표정 등을 AI 카메라를 통해 모두 모니터링할 수 있다. 인터뷰 후 채용 담당자는 AI를 사용하여 후보자의 관점과 판단, 공감 및 감성 지능은 물론 참여, 의사 결정 및 감독 능력을 평가합니다. 이러한 특성은 후보자가 어떻게 공동 문제 해결에 참여하고 압박이 심한 상황에서 결정적인 역할을 하는지 이해하기 위해 판단되고 평가됩니다.

의사결정 능력과 문제 해결 능력 외에도 후보자가 엄격한 기한 내에 각자의 직무를 완수하는 능력도 인공지능과 빅데이터의 도움을 받아 평가할 수 있습니다. 인터뷰 및 채용 연습 외에도 다른 기술을 사용하여 후보자의 성격을 평가할 수 있습니다. 예를 들어 채용 담당자는 후보자의 소셜 미디어 페이지를 탐색하여 후보자의 성격 특성과 일반적인 주제에 대한 의견을 알아볼 수 있습니다. 누군가의 소셜 미디어 페이지를 보는 것이 그 사람의 견해를 부정적으로 평가하는 방법이 되어서는 안 됩니다. 대신, 이는 후보자가 자신의 아이디어를 구두 또는 시각적으로 어떻게 표현하는지에 대한 좋은 척도입니다. 요컨대, 후보자의 의사소통 능력은 어느 정도 이런 방식으로 결정될 수 있습니다. 인공 지능과 빅 데이터는 채용 담당자가 웹에서 이 데이터를 찾은 다음 패턴 및 이상 인식을 통해 처리하여 후보자의 잠재적인 성격 특성을 찾는 데 도움이 될 수 있습니다.

이 외에도 기계 학습을 사용하여 증강 현실 도구를 후보자 모집에 통합할 수 있습니다. 증강 현실 도구는 실제 운영 위기를 처리하는 후보자의 능력을 평가하기 위해 실제 세계와 유사한 시뮬레이션을 생성할 수 있습니다. 인공 지능은 방대한 빅 데이터 저장소를 사용하여 이 테스트에서 후보자의 성과를 평가합니다. 증강 현실은 인공 지능의 힘과 엄청난 규모의 빅 데이터 없이는 불가능했던 후보자 모집 및 선택에 완전히 새로운 차원을 추가합니다.

2. 선거 활동

Cambridge Analytica가 도널드 트럼프 전 미국 대통령의 2016년 선거 승리를 어떻게 도왔는지 들어보셨을 것입니다. 트럼프 씨의 캠페인은 역대 가장 데이터 중심적인 정치 캠페인 중 하나였습니다. 그러나 탐구하기 전에 심리측정 분석의 주요 목적을 이해하는 것이 중요합니다.

심리 테스트는 먼저 개인(또는 그룹)에 대한 정보는 물론 다양한 주제에 대한 좋아하는 것, 싫어하는 것, 견해 및 의견을 얻는 데 사용됩니다. 데이터 수집기가 이 정보를 처리하는 방법은 원하는 최종 결과의 유형에 따라 다릅니다. 이런 경우 빅데이터와 인공지능을 활용하면 주 또는 국가 전반에 걸쳐 심리평가의 범위를 확대하는 데 도움이 될 수 있다. 개인의 성격을 조사하여 특정 제품이나 서비스를 구매하도록 설득할 수 있다는 것이 입증되었습니다. 또한 이 정보는 개인이 선거에서 특정 후보자나 정당에 투표하도록 설득하는 데 사용될 수 있습니다.

2016년 미국 대통령 선거에 영향을 미친 Cambridge Analytica의 역할을 살펴보겠습니다.

기술 회사가 캠페인 이전부터 한동안 트럼프 대통령의 캠페인과 연관되어 있었다는 징후가 있습니다. 이 그룹은 선거에서 우위를 점하기 위해 심리측정 인공지능과 빅데이터를 활용했습니다. 이전 후보자들이 주로 인구통계학적 주장을 활용하고 다른 핵심 유권자 문제에 초점을 맞추었기 때문에 이러한 접근 방식은 특히 획기적입니다. Cambridge Analytica는 고급 심리측정학을 혼합하여 긍정적인 최종 결과를 생성합니다.

선거에서 성공하기 위해 조직에서는 OCEAN 모델, AI 기반 시스템 및 모델로 개인을 공격하는 개념, 고급 빅 데이터 분석과 같은 몇 가지 일반적인 도구 외에도 행동 과학 및 유권자 모니터링을 사용합니다.

이 프로세스의 초기 단계에서는 조직이 Facebook과 같은 유명 조직의 소셜 미디어 페이지에서 수백만 명의 개인에 대한 대량의 데이터를 구매해야 했습니다. 이러한 기록 외에도 계류 중인 유지 관리 청구서, 토지 및 재산 등록부, 쇼핑 데이터, 제품 및 서비스 구매 내역 등의 세부 정보도 수집되어 면밀히 분석됩니다. 메시지가 길고 넓다면 이는 여러 사람과 각 사람의 여러 측면을 다룬다는 의미입니다. 즉, 빅데이터. 이 모든 정보를 수집한 후 영국 회사는 데이터를 집계하고 정리했습니다. 또한 조직은 Big Five 성격 특성에 따라 각 사람을 다르게 분류하는 인공 지능 도구를 배포했습니다.

이 정보를 바탕으로 공화당 대선 후보들은 연설에서 더 취약하고 더 쉽게 조작될 유권자를 대상으로 합니다. 심지어 선거 연설도 사회 모든 계층의 개인이 공감할 수 있도록 세심하게 조정되고 맞춤화되었습니다. 이 회사는 고도의 데이터 기반 노력으로 500만 달러 이상의 수익을 창출했습니다. 그러나 트럼프 대통령의 압승의 진짜 영웅은 인공지능과 빅데이터였다.

3. 제품 및 서비스 마케팅

위에서 언급했듯이 인공 지능과 빅 데이터를 사용하면 잠재 고객의 특성, 선호도 및 선호도를 이해하여 특정 타겟 광고로 받은 편지함을 가득 채울 수 있습니다. 마케팅 목적으로 조직은 고객의 소셜 미디어 페이지, 디지털 소매업체의 구매 내역, 경우에 따라 문자 메시지까지 포함한 빅 데이터를 사용합니다.

심리측정학에서 빅데이터 사용의 어려움

인공지능과 비교하여 빅데이터는 위의 응용 분야에서 틀림없이 더 중요합니다. 이제 우리는 심리 측정학에서 인공 지능과 빅 데이터의 응용 분야 중 일부를 살펴보았으므로 조직이 성격 분석에 빅 데이터를 사용할 때 직면할 수 있는 과제는 다음과 같습니다.

1. 빅 데이터와 인공 지능 제공으로 인한 문제. 지능형 시스템은 분석된 정보의 신뢰성과 관련이 있습니다. 빅데이터의 신뢰성은 기존 데이터와 기술, 인공지능 알고리즘에 의해 심각한 영향을 받을 것이다. 빅 데이터의 혼란과 복잡성은 예측과 높은 수준의 결정을 내릴 때 AI 시스템에 문제를 일으킬 수 있습니다.

2. 인공지능의 편견은 언제나 기술이 극복해야 할 문제였습니다. 빅데이터가 추가되면서 AI 결과물의 공정성은 여전히 ​​문제로 남을 수 있다. 또한, 인공지능과 빅데이터의 영향력 범위는 인터넷이라는 폐쇄된 온실에 의해 어느 정도 제한된다고 할 수도 있다. 따라서 경제적으로 취약한 개인이나 가구는 인터넷에 접속할 수 없고 컴퓨팅 기기를 구입할 수 없기 때문에 빅데이터로는 이들에 대한 정보를 담기에는 부족한 경우가 많습니다.

3. 신뢰성과 공정성 다음에는 사용자 개인 정보 보호 문제가 따릅니다. 보시다시피 인공 지능과 빅 데이터는 사용자 데이터를 광범위하게 사용하여(때로는 사용자의 서명 동의 없이) 최종 결과를 생성합니다. 따라서 빅데이터와 인공지능은 이와 관련해 계속해서 윤리적 딜레마에 직면해 있다.

심리측정학 분야에서는 인공지능과 빅데이터의 수많은 기능이 매우 중요합니다. 그러나 추가적인 개선을 위해 해결해야 할 몇 가지 과제가 있습니다. 그러나 이러한 기술이 거의 지속적으로 발전하고 있다는 점을 고려할 때 이러한 기술이 향후 심리측정학의 범위를 더욱 심화시킬 수 있다는 것은 확실합니다. 그동안 빅데이터와 인공지능은 위의 목적 등을 달성하기 위해 심리측정 연구 분야에 계속해서 남을 것이다.


위 내용은 심리분석에 인공지능과 빅데이터 활용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

AI와 같은 시장을 개척하는 GlobalFoundries는 Tagore Technology의 질화 갈륨 기술 및 관련 팀을 인수합니다. AI와 같은 시장을 개척하는 GlobalFoundries는 Tagore Technology의 질화 갈륨 기술 및 관련 팀을 인수합니다. Jul 15, 2024 pm 12:21 PM

7월 5일 이 웹사이트의 소식에 따르면 글로벌파운드리는 올해 7월 1일 보도자료를 통해 타고르 테크놀로지(Tagore Technology)의 전력질화갈륨(GaN) 기술 및 지적재산권 포트폴리오 인수를 발표하고 자동차와 인터넷 시장 점유율 확대를 희망하고 있다고 밝혔다. 더 높은 효율성과 더 나은 성능을 탐구하기 위한 사물 및 인공 지능 데이터 센터 응용 분야입니다. 생성 AI와 같은 기술이 디지털 세계에서 계속 발전함에 따라 질화갈륨(GaN)은 특히 데이터 센터에서 지속 가능하고 효율적인 전력 관리를 위한 핵심 솔루션이 되었습니다. 이 웹사이트는 이번 인수 기간 동안 Tagore Technology의 엔지니어링 팀이 GLOBALFOUNDRIES에 합류하여 질화갈륨 기술을 더욱 개발할 것이라는 공식 발표를 인용했습니다. G

See all articles