목차
RL 사전 훈련 소개
온라인 사전 훈련
오프라인 사전 훈련
일반 에이전트를 향하여
기술 주변기기 일체 포함 심층 강화 학습 사전 훈련, 온라인 및 오프라인 연구에 대한 체계적인 검토로 충분합니다.

심층 강화 학습 사전 훈련, 온라인 및 오프라인 연구에 대한 체계적인 검토로 충분합니다.

Apr 09, 2023 am 11:31 AM
강화 학습 기차

최근 몇 년 동안 강화 학습(RL)은 딥 러닝을 중심으로 빠르게 발전했습니다. 게임에서 로봇 공학에 이르기까지 다양한 분야에서 복잡한 대규모 RL 알고리즘 및 시스템 설계에 대한 사람들의 관심이 자극되었습니다. 그러나 기존 RL 연구에서는 일반적으로 에이전트가 새로운 작업에 직면할 때 처음부터 학습할 수 있으므로 사전에 획득한 사전 지식을 사용하여 의사 결정을 지원하기 어렵고 계산 오버헤드가 높습니다.

지도 학습 분야에서 사전 훈련 패러다임은 대규모 데이터 세트에 대한 사전 훈련을 통해 네트워크 모델이 다양한 다운스트림에 빠르게 적응할 수 있는 효과적인 방법임이 입증되었습니다. 작업. 유사한 아이디어가 RL에서도 시도되었으며, 특히 "일반주의" 에이전트에 대한 최근 연구[1, 2]는 사람들로 하여금 GPT-3[3]과 같은 것이 Universal 사전 훈련된 분야에서도 탄생할 수 있는지 궁금해하게 만듭니다. 모델.

그러나 RL 분야에서 사전 훈련을 적용하는 것은 업스트림 작업과 다운스트림 작업 간의 상당한 차이, 사전 훈련 데이터를 효율적으로 획득하고 활용하는 방법, 사전 지식을 효과적으로 전달하는 방법 등 많은 과제에 직면합니다. 등은 사전 훈련을 방해합니다. RL에서 훈련 패러다임의 성공적인 적용. 동시에, 이전 연구에서 고려한 실험 설정과 방법에는 큰 차이가 있어 연구자가 실제 시나리오에서 적절한 사전 훈련 모델을 설계하기가 어렵습니다.

RL 분야의 사전 훈련 개발과 가능한 향후 개발 방향을 정리하기 위해 Shanghai Jiao Tong University와 Tencent의 연구원이 리뷰를 작성하여 기존 RL 사전 훈련의 세분화 방법과 방법을 논의했습니다. - 해결해야 할 문제 .

심층 강화 학습 사전 훈련, 온라인 및 오프라인 연구에 대한 체계적인 검토로 충분합니다.

문서 주소: https://arxiv.org/pdf/2211.03959.pdf

RL 사전 훈련 소개

강화 학습(RL)은 순차 결정을 위한 일반적인 수학적 형식을 제공합니다. -만들기. RL 알고리즘과 심층 신경망을 통해 에이전트는 데이터 기반 방식으로 학습하고 지정된 보상 기능을 최적화하여 다양한 분야의 다양한 애플리케이션에서 인간 성능을 뛰어넘는 성능을 달성했습니다. 그러나 RL이 특정 작업을 해결하는 데 효과적인 것으로 입증되었지만 샘플 효율성과 일반화 능력은 여전히 ​​현실 세계에서 RL 적용을 방해하는 두 가지 주요 장애물입니다. RL 연구에서 표준 패러다임은 에이전트가 자신 또는 다른 사람이 수집한 경험으로부터 학습하여 단일 작업에 대한 무작위 초기화를 통해 신경망을 최적화하는 것입니다. 대조적으로, 인간의 경우 세상에 대한 사전 지식은 의사 결정 과정에 큰 도움이 됩니다. 작업이 이전에 본 작업과 관련된 경우 인간은 처음부터 배우지 않고 이미 학습한 지식을 재사용하여 새로운 작업에 빠르게 적응하는 경향이 있습니다. 따라서 인간에 비해 RL 에이전트는 데이터 효율성이 낮고 과적합되기 쉽습니다.

그러나 최근 다른 머신러닝 분야의 발전은 대규모 사전 훈련을 통해 구축된 사전 지식 활용을 적극적으로 옹호하고 있습니다. 광범위한 데이터를 대규모로 학습함으로써 대규모 기초 모델을 다양한 다운스트림 작업에 신속하게 적용할 수 있습니다. 이 사전 훈련-미세 조정 패러다임은 컴퓨터 비전 및 자연어 처리와 같은 분야에서 효과적인 것으로 입증되었습니다. 그러나 사전 훈련은 RL 분야에 큰 영향을 미치지 않았습니다. 이 접근 방식은 유망하지만 대규모 RL 사전 훈련을 위한 원칙을 설계하는 데에는 많은 어려움이 있습니다. 1) 도메인 및 작업의 다양성 2) 제한된 데이터 소스 3) 다운스트림 작업 해결의 어려움에 대한 신속한 적응. 이러한 요소는 RL의 고유한 특성에서 발생하며 연구자의 특별한 고려가 필요합니다.

사전 훈련은 RL에 큰 잠재력을 갖고 있으며, 이 연구는 이 방향에 관심이 있는 사람들에게 출발점이 될 수 있습니다. 이 기사에서 연구자들은 심층 강화 학습에 대한 기존 사전 훈련 작업을 체계적으로 검토하려고 시도합니다.

최근 몇 년 동안 심층 강화 학습 사전 훈련은 몇 가지 획기적인 발전을 경험했습니다. 첫째, 알파고에서는 지도학습을 통해 전문가가 취하는 행동을 예측하는 전문가 시연 기반의 사전훈련(pre-training)이 활용됐다. 덜 감독된 대규모 사전 훈련을 추구하면서 감독되지 않은 RL 분야가 빠르게 성장하여 에이전트가 보상 신호 없이 환경과의 상호 작용을 통해 학습할 수 있습니다. 또한 오프라인 강화 학습(오프라인 RL)의 급속한 발전으로 인해 연구자들은 사전 훈련을 위해 레이블이 지정되지 않은 차선의 오프라인 데이터를 사용하는 방법을 더 고려하게 되었습니다. 마지막으로 다중 작업 및 다중 모드 데이터를 기반으로 하는 오프라인 훈련 방법은 일반적인 사전 훈련 패러다임의 길을 열어줍니다.

심층 강화 학습 사전 훈련, 온라인 및 오프라인 연구에 대한 체계적인 검토로 충분합니다.

온라인 사전 훈련

이전 RL 성공은 치밀하고 잘 설계된 보상 기능을 통해 달성되었습니다. 많은 분야에서 큰 발전을 이룬 전통적인 RL 패러다임은 대규모 사전 훈련으로 확장할 때 두 가지 주요 과제에 직면합니다. 첫째, RL 에이전트는 쉽게 과적합되며 복잡한 작업 보상으로 사전 훈련된 에이전트가 이전에 본 적이 없는 작업에서 좋은 성능을 달성하기 어렵습니다. 또한, 보상 기능을 설계하는 것은 일반적으로 매우 비용이 많이 들고 많은 전문 지식이 필요하므로 실제로는 의심할 여지 없이 큰 과제입니다.

보상 신호가 없는 온라인 사전 훈련은 사람의 개입 없이 보편적인 사전 지식과 지도 신호를 학습할 수 있는 솔루션이 될 수 있습니다. 온라인 사전 교육은 사람의 감독 없이 환경과의 상호 작용을 통해 사전 지식을 습득하는 것을 목표로 합니다. 사전 훈련 단계에서 에이전트는 오랫동안 환경과 상호 작용할 수 있지만 외부 보상을 받을 수는 없습니다. 비지도 학습(Unsupervised RL)이라고도 알려진 이 솔루션은 최근 몇 년 동안 연구원들에 의해 활발히 연구되었습니다.

에이전트가 감독 신호 없이 환경에서 사전 지식을 얻도록 동기를 부여하기 위한 성숙한 방법은 에이전트가 다양한 경험을 수집하거나 이전 가능한 기술을 마스터하도록 장려하고 그에 따라 보상을 설계하도록 에이전트에 대한 내재적 보상을 설계하는 것입니다. 이전 연구에서는 에이전트가 본질적인 보상과 표준 RL 알고리즘을 갖춘 온라인 사전 훈련을 통해 다운스트림 작업에 빠르게 적응할 수 있는 것으로 나타났습니다.

심층 강화 학습 사전 훈련, 온라인 및 오프라인 연구에 대한 체계적인 검토로 충분합니다.

오프라인 사전 훈련

온라인 사전 훈련은 사람의 감독 없이 좋은 사전 훈련 결과를 얻을 수 있지만 여전히 대규모 적용에는 제한됩니다. 결국, 온라인 상호 작용은 크고 다양한 데이터 세트를 교육해야 하는 필요성과 다소 상호 배타적입니다. 이 문제를 해결하기 위해 사람들은 종종 데이터 수집과 사전 훈련 링크를 분리하고 사전 훈련을 위해 다른 에이전트나 인간으로부터 수집한 과거 데이터를 직접 사용하기를 희망합니다.

가능한 솔루션은 오프라인 강화 학습입니다. 오프라인 강화학습의 목적은 오프라인 데이터로부터 보상을 극대화하는 RL 정책을 얻는 것입니다. 근본적인 과제는 분포 이동 문제, 즉 훈련 데이터와 테스트 중에 표시된 데이터 간의 분포 차이입니다. 기존 오프라인 강화 학습 방법은 함수 근사를 사용할 때 이 문제를 해결하는 방법에 중점을 둡니다. 예를 들어, 정책 제약 방법은 데이터 세트에 표시되지 않는 조치를 취하지 않도록 학습된 정책을 명시적으로 요구하며, 값 정규화 방법은 값 함수를 일부 하한 형태에 맞춰 값 함수의 과대평가 문제를 완화합니다. 그러나 오프라인으로 훈련된 전략이 오프라인 데이터세트에서 볼 수 없는 새로운 환경으로 일반화될 수 있는지 여부는 아직 연구가 부족합니다.

아마도 RL 정책 학습을 피하고 대신 오프라인 데이터를 사용하여 다운스트림 작업의 수렴 속도나 최종 성능에 도움이 되는 사전 지식을 학습할 수 있습니다. 더 흥미롭게도 모델이 사람의 감독 없이 오프라인 데이터를 활용할 수 있다면 엄청난 양의 데이터를 활용할 수 있는 잠재력이 있습니다. 본 논문에서 연구자들은 이 설정을 오프라인 사전 훈련이라고 부르며 에이전트는 오프라인 데이터에서 중요한 정보(예: 좋은 표현 및 행동 사전 예측)를 추출할 수 있습니다.

심층 강화 학습 사전 훈련, 온라인 및 오프라인 연구에 대한 체계적인 검토로 충분합니다.

일반 에이전트를 향하여

단일 환경 및 단일 양식에서의 사전 훈련 방법은 주로 위에서 언급한 온라인 사전 훈련과 오프라인 사전 훈련 설정에 중점을 두고 있으며 최근에는 현장에서도 단일 일반 의사 결정 모델(예: Gato [1] 및 다중 게임 DT [2])을 구축하여 동일한 모델이 다양한 환경에서 다양한 양식의 작업을 처리할 수 있도록 하는 것에 대한 연구자들 사이에서 관심이 급증했습니다. 에이전트가 다양한 개방형 작업에서 학습하고 이에 적응할 수 있도록 하기 위해 연구에서는 시각적 인식 및 언어 이해와 같은 다양한 형태의 사전 지식을 대량 활용하기를 희망합니다. 더 중요한 것은 연구자들이 다른 분야의 RL과 머신러닝 간의 가교를 성공적으로 구축하고 이전의 성공적인 경험을 결합할 수 있다면 다양한 작업을 완료할 수 있는 일반 에이전트 모델을 구축할 수 있을 수도 있다는 것입니다.

위 내용은 심층 강화 학습 사전 훈련, 온라인 및 오프라인 연구에 대한 체계적인 검토로 충분합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

오픈 소스! ZoeDepth를 넘어! DepthFM: 빠르고 정확한 단안 깊이 추정! 오픈 소스! ZoeDepth를 넘어! DepthFM: 빠르고 정확한 단안 깊이 추정! Apr 03, 2024 pm 12:04 PM

0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

인코더-디코더 아키텍처를 버리고 더 나은 결과를 얻기 위해 확산 모델을 사용하여 더 나은 결과를 얻었습니다. 인코더-디코더 아키텍처를 버리고 더 나은 결과를 얻기 위해 확산 모델을 사용하여 더 나은 결과를 얻었습니다. Feb 07, 2024 pm 10:12 PM

현재 딥 에지 감지 네트워크는 일반적으로 다중 레벨 기능을 더 잘 추출하기 위해 업 및 다운 샘플링 모듈을 포함하는 인코더-디코더 아키텍처를 채택합니다. 그러나 이 구조는 정확하고 상세한 에지 감지 결과를 출력하기 위해 네트워크를 제한합니다. 이 문제에 대한 대응으로 AAAI2024에 대한 논문이 새로운 솔루션을 제공합니다. 논문 제목: DiffusionEdge:DiffusionProbabilisticModelforCrispEdgeDetection 저자: Ye Yunfan(국방기술대학교), Xu Kai(국립국방기술대학교), Huang Yuxing(국립국방기술대학교), Yi Renjiao(국립국방기술대학교), Cai Zhiping (국방기술대학교) 논문링크 : https://ar

Tongyi Qianwen은 다시 오픈 소스이며 Qwen1.5는 6개 볼륨 모델을 제공하며 성능은 GPT3.5를 초과합니다. Tongyi Qianwen은 다시 오픈 소스이며 Qwen1.5는 6개 볼륨 모델을 제공하며 성능은 GPT3.5를 초과합니다. Feb 07, 2024 pm 10:15 PM

봄 축제에 맞춰 Tongyi Qianwen Large Model(Qwen) 버전 1.5가 온라인에 출시되었습니다. 오늘 아침, 새 버전 소식이 AI 커뮤니티의 이목을 끌었습니다. 대형 모델의 새 버전에는 0.5B, 1.8B, 4B, 7B, 14B 및 72B의 6가지 모델 크기가 포함됩니다. 그 중 가장 강력한 버전의 성능은 GPT3.5와 Mistral-Medium을 능가합니다. 이 버전에는 기본 모델과 채팅 모델이 포함되어 있으며 다국어 지원을 제공합니다. Alibaba의 Tongyi Qianwen 팀은 관련 기술이 Tongyi Qianwen 공식 웹사이트와 Tongyi Qianwen 앱에도 출시되었다고 밝혔습니다. 또한 오늘의 Qwen 1.5 릴리스에는 다음과 같은 주요 기능이 있습니다. 32K 컨텍스트 길이를 지원하고 Base+Chat 모델의 체크포인트를 엽니다.

대형 모델도 슬라이스할 수 있으며 Microsoft SliceGPT는 LLAMA-2의 계산 효율성을 크게 높입니다. 대형 모델도 슬라이스할 수 있으며 Microsoft SliceGPT는 LLAMA-2의 계산 효율성을 크게 높입니다. Jan 31, 2024 am 11:39 AM

LLM(대형 언어 모델)은 일반적으로 수십억 개의 매개변수를 가지며 수조 개의 토큰에 대해 훈련됩니다. 그러나 이러한 모델은 훈련하고 배포하는 데 비용이 매우 많이 듭니다. 계산 요구 사항을 줄이기 위해 다양한 모델 압축 기술이 종종 사용됩니다. 이러한 모델 압축 기술은 일반적으로 증류, 텐서 분해(낮은 순위 인수분해 포함), 가지치기 및 양자화의 네 가지 범주로 나눌 수 있습니다. 가지치기 방법은 한동안 사용되어 왔지만 성능을 유지하기 위해 가지치기 후 RFT(복구 미세 조정)가 필요한 경우가 많아 전체 프로세스에 비용이 많이 들고 확장이 어렵습니다. ETH Zurich와 Microsoft의 연구원들은 SliceGPT라는 이 문제에 대한 솔루션을 제안했습니다. 이 방법의 핵심 아이디어는 가중치 행렬에서 행과 열을 삭제하여 네트워크의 임베딩을 줄이는 것입니다.

안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

Sora 'Ke Ling'의 Kuaishou 버전이 테스트용으로 공개되었습니다. 120초가 넘는 비디오를 생성하고 물리학을 더 잘 이해하며 복잡한 움직임을 정확하게 모델링할 수 있습니다. Sora 'Ke Ling'의 Kuaishou 버전이 테스트용으로 공개되었습니다. 120초가 넘는 비디오를 생성하고 물리학을 더 잘 이해하며 복잡한 움직임을 정확하게 모델링할 수 있습니다. Jun 11, 2024 am 09:51 AM

무엇? 주토피아는 국내 AI로 현실이 되는 걸까? 영상과 함께 노출된 것은 '켈링'이라는 국산 대형 영상세대 신형 모델이다. Sora는 유사한 기술 경로를 사용하고 자체 개발한 여러 기술 혁신을 결합하여 크고 합리적인 움직임뿐만 아니라 물리적 세계의 특성을 시뮬레이션하고 강력한 개념적 결합 능력과 상상력을 갖춘 비디오를 제작합니다. 데이터에 따르면 Keling은 최대 1080p의 해상도로 30fps에서 최대 2분의 초장 영상 생성을 지원하며 다양한 화면비를 지원합니다. 또 다른 중요한 점은 Keling이 실험실에서 공개한 데모나 비디오 결과 시연이 아니라 단편 비디오 분야의 선두주자인 Kuaishou가 출시한 제품 수준 애플리케이션이라는 점입니다. 더욱이 백지 작성이 아닌 실용성에 중점을 두고, 출시되자마자 온라인에 진출하는 데 중점을 두고 있다. 콰이잉에서는 커링의 대형 모델이 출시됐다.

초지능의 생명력이 깨어난다! 하지만 자동 업데이트 AI가 등장하면서 엄마들은 더 이상 데이터 병목 현상을 걱정할 필요가 없습니다. 초지능의 생명력이 깨어난다! 하지만 자동 업데이트 AI가 등장하면서 엄마들은 더 이상 데이터 병목 현상을 걱정할 필요가 없습니다. Apr 29, 2024 pm 06:55 PM

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

Gemini Pro를 따라잡고 추론 및 OCR 기능을 향상시키는 LLaVA-1.6은 너무 강력합니다. Gemini Pro를 따라잡고 추론 및 OCR 기능을 향상시키는 LLaVA-1.6은 너무 강력합니다. Feb 01, 2024 pm 04:51 PM

지난해 4월 위스콘신대학교 매디슨캠퍼스, 마이크로소프트 리서치, 컬럼비아대학교 연구진이 공동으로 LLaVA(Large Language and Vision Assistant)를 출시했다. LLaVA는 작은 다중 모드 명령 데이터 세트로만 교육되었지만 일부 샘플에서는 GPT-4와 매우 유사한 추론 결과를 보여줍니다. 그런 다음 10월에 원래 LLaVA에 대한 간단한 수정을 통해 11개 벤치마크에서 SOTA를 업데이트한 LLaVA-1.5를 출시했습니다. 이 업그레이드의 결과는 매우 흥미롭고 다중 모드 AI 보조 분야에 새로운 혁신을 가져옵니다. 연구팀은 추론, OCR,

See all articles