머신러닝과 인공지능(AI)은 일부 위협 탐지 및 대응 도구의 핵심 기술이 되고 있습니다. 즉석에서 학습하고 사이버 위협 역학에 자동으로 적응하는 능력은 보안 팀의 역량을 강화합니다.
그러나 일부 악의적인 해커는 기계 학습과 AI를 사용하여 네트워크 공격을 확장하고 보안 제어를 우회하며 전례 없는 속도로 새로운 취약점을 찾아 파괴적인 결과를 초래할 수도 있습니다. 해커들이 이 두 가지 기술을 악용하는 일반적인 방법은 다음과 같습니다.
Omida 분석가인 Fernando Montenegro는 전염병 예방 담당자가 수십 년 동안 기계 학습 기술을 사용해 스팸을 탐지해 왔다고 말했습니다. "스팸 방지는 기계 학습의 가장 성공적인 초기 사용 사례입니다."
사용된 스팸 필터가 이메일이 통과되지 않거나 특정 점수를 부여받지 못한 이유를 제공하는 경우 공격자는 자신의 행동을 조정할 수 있습니다. 그들은 공격을 더욱 성공적으로 만들기 위해 합법적인 도구를 사용합니다. "충분한 제출을 통해 모델이 무엇인지 복구한 다음 해당 모델을 우회하도록 공격을 맞춤화할 수 있습니다.
취약한 것은 스팸 필터만이 아닙니다. 점수나 기타 결과를 제공하는 보안 공급업체는 남용될 수 있습니다. "모든 사람이 이 문제를 겪는 것은 아니지만, 주의하지 않으면 누군가가 이 결과를 악용하게 될 것입니다."
공격자는 단순히 보안 도구를 위해 머신러닝을 사용하는 것이 아닙니다. 귀하의 이메일이 스팸 필터를 통과하는지 테스트해 보세요. 또한 이러한 이메일을 작성하기 위해 기계 학습을 사용합니다. Ernst & Young Technology Consulting의 파트너인 Adam Malone은 "그들은 범죄 포럼에서 이러한 서비스를 광고합니다. 그들은 이러한 기술을 사용하여 더욱 정교한 피싱 이메일을 생성하고 거짓 페르소나를 만들어 사기를 더욱 심화시킵니다"라고 말했습니다. 머신러닝을 사용한다고 광고하는데, 이는 단순한 마케팅 수사가 아니라 실제입니다. Malone은 "해보시면 효과가 정말 좋다는 것을 알게 될 것입니다."라고 말했습니다.
공격자는 기계 학습을 사용하여 피싱 이메일을 창의적으로 맞춤 설정하여 이러한 이메일이 스팸으로 표시되는 것을 방지할 수 있습니다. 사용자에게는 클릭할 기회가 있습니다. 이메일 텍스트 이상의 것을 사용자 정의합니다. 공격자는 AI를 사용하여 매우 실제처럼 보이는 사진, 소셜 미디어 프로필 및 기타 자료를 생성하여 커뮤니케이션을 최대한 사실적으로 보이게 만듭니다.
3. 더욱 효율적인 비밀번호 추측
또한 기계 학습을 사용하여 보안 제어를 식별하므로 더 적은 시도로 비밀번호를 추측할 수 있어 시스템 해킹에 성공할 확률이 높아집니다.
4. Deepfakes
더 일반적으로 사기꾼은 AI를 사용하여 진짜처럼 보이는 사진을 생성합니다. 프로필과 피싱 이메일을 사용하여 이메일을 더욱 신뢰할 수 있게 만듭니다. 이것은 큰 사업입니다. FBI 보고서에 따르면 비즈니스 이메일 사기로 인해 2016년 이후 430억 달러 이상의 손실이 발생했습니다. 지난 가을 언론에서는 한 은행 직원이 자신이 알고 있는 회사 이사로부터 전화를 받았다는 이유만으로 홍콩 은행에서 사기를 당해 범죄 조직에 3,500만 달러를 송금했다고 보도했습니다. 그는 감독의 목소리를 알아듣고 의심 없이 이적을 승인했다.
5. 기성 보안 도구 무력화
현재 일반적으로 사용되는 많은 보안 도구에는 일종의 인공 지능 또는 기계 학습이 내장되어 있습니다. 예를 들어 바이러스 백신 소프트웨어는 의심스러운 동작을 찾을 때 기본 서명 이상의 기능을 사용합니다. "온라인에서 사용 가능한 모든 것, 특히 오픈 소스는 악의적인 행위자에 의해 악용될 수 있습니다."
공격자가 활용하는 것은 AI 기반 보안 도구뿐만이 아닙니다. AI는 다양한 기술 중 하나일 뿐입니다. 예를 들어, 사용자는 문법 오류를 찾아 피싱 이메일을 식별하는 방법을 배울 수 있는 경우가 많습니다. 그리고 Grammarly와 같은 AI 기반 문법 검사기는 공격자가 글쓰기를 개선하는 데 도움을 줄 수 있습니다.
정찰에 기계 학습을 사용하면 공격자가 대상의 트래픽 패턴, 방어 및 잠재적인 취약점을 볼 수 있습니다. 정찰은 쉬운 작업이 아니며 일반 사이버 범죄자의 손이 닿지 않는 작업입니다. "AI를 정찰에 사용하려면 일정한 기술이 있어야 합니다. 따라서 이러한 기술은 고급 해커만이 사용할 것이라고 생각합니다."
다만 어느 정도 상용화되면 이 기술은 언더그라운드 블랙을 통과할 것입니다. 마켓은 서비스로 제공되기 때문에 많은 사람들이 이용할 수 있습니다. Mellen은 “해커 국가가 머신러닝을 사용하는 툴킷을 개발하여 범죄 커뮤니티에 공개하는 경우에도 이런 일이 발생할 수 있습니다. 그러나 사이버 범죄자는 여전히 머신러닝 애플리케이션의 역할과 효과를 이해해야 합니다. ”
기업이 공격을 받고 인터넷에서 영향을 받는 시스템의 연결을 끊으면 맬웨어가 해당 명령에 다시 연결하지 못할 수 있습니다. 서버는 추가 지침을 받습니다. "공격자는 직접 제어하지 않더라도 오랫동안 지속될 수 있는 지능형 모델을 개발하고 싶을 수도 있습니다."라고 Kantarcioglu는 "그러나 일반적인 사이버 범죄의 경우 이것이 특별히 중요하지 않다고 생각합니다." 8. AI 중독
예를 들어, 해커는 조작할 수 있습니다." 탈취된 사용자 계정은 매일 오전 2시에 시스템에 로그인해 무해한 작업을 수행하는데, 시스템은 오전 2시에 작업해도 의심스러운 것이 없다고 믿게 하여 사용자가 통과해야 하는 보안 수준을 낮춘다.
Microsoft Tay 챗봇도 비슷한 이유로 2016년에 인종차별적이라고 배웠습니다. 동일한 접근 방식을 사용하여 특정 유형의 맬웨어가 안전하다고 생각하거나 특정 크롤러 동작이 완전히 정상이라고 생각하도록 시스템을 교육할 수 있습니다.
9. AI 퍼지 테스트
이러한 기술은 보안 패치, 피싱 방지 교육, 마이크로 세분화와 같은 사이버 보안 조치가 여전히 중요한 이유 중 하나입니다. Forrester의 Mellen은 "이것이 심층 방어가 중요한 이유 중 하나입니다. 공격자가 사용할 수 있는 장애물뿐만 아니라 여러 가지 장애물을 설치해야 합니다.
전문 지식이 부족하여 악의적인 해커를 방지할 수 있습니다."라고 말했습니다. 머신러닝과 AI 활용에서
"손끝에는 공격 대상이 많을 뿐만 아니라 기계 학습과 인공 지능을 사용하여 공격을 시작하지 않고도 돈을 벌 수 있는 다른 방법이 있습니다."라고 Mellen은 말했습니다. "내 경험상 대부분의 경우 공격자는 , 기업 방어가 향상되고 사이버 범죄자와 해커 국가가 공격 개발에 계속 투자함에 따라 균형이 곧 바뀌기 시작할 수 있습니다.
위 내용은 머신러닝을 사용해 공격을 시작하는 9가지 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!