2023년에 주목해야 할 10가지 머신러닝 트렌드
기계 학습 지원 기계로 만들어진 알고리즘은 직원의 관심과 비즈니스 목표에 맞춰 인공 지능을 더 잘 이해합니다. 예측 분석에 따르면 2024년에는 머신러닝이 매우 보편화될 것입니다.
다음은 2022년에 새롭게 떠오르는 기계 학습 트렌드에 대한 가이드입니다.
1. 기계 학습 운영 관리: 기계 학습 운영 관리(MLOps)의 주요 목적은 기계 학습 솔루션의 개발 프로세스를 단순화하는 것입니다. MLOps는 팀 커뮤니케이션, 적절한 ML 파이프라인 구축, 민감한 데이터 대규모 관리 등 비즈니스 운영에서 발생하는 문제에도 도움이 됩니다.
2. 강화 학습: 기계 학습 시스템은 강화 학습에서 주변 환경의 경험을 통해 학습합니다. 이는 비디오 게임과 보드 게임의 인공 지능에 큰 잠재력을 가지고 있습니다. 그러나 애플리케이션 보안이 최우선인 경우 ML 강화는 이상적인 선택이 아닐 수 있습니다.
3.Quantum ML: Quantum 컴퓨팅은 더욱 강력한 인공 지능 및 기계 학습 모델을 만드는 데 큰 가능성을 보여줍니다. 이 기술은 아직 실제 적용 범위를 벗어나지만 Microsoft, Amazon, IBM이 클라우드 모델을 통해 양자 컴퓨팅 리소스와 시뮬레이터에 쉽게 액세스할 수 있게 되면서 상황이 바뀌기 시작했습니다.
4. General Adversarial Network: GAN 또는 General Adversarial Network는 선택적 네트워크에서 검토해야 하는 샘플을 생성하고 모든 유형의 바람직하지 않은 콘텐츠를 제거할 수 있는 새로운 ML 트렌드입니다. 기계 학습은 미래의 물결이며 모든 회사는 이 새로운 기술에 적응하고 있습니다
5. 코드 없는 기계 학습: 기계 학습은 전처리, 모델링, 알고리즘 구축, 재교육, 배포를 거치지 않고 ML 애플리케이션을 개발하는 방법입니다. 및 기타 길고 시간이 많이 걸리는 프로세스.
6. 자동화된 기계 학습: 자동화된 기계 학습은 데이터에 라벨을 지정하고 신경망 아키텍처를 자동으로 조정하는 도구를 개선합니다. 라벨이 붙은 데이터에 대한 수요로 인해 저비용 국가에서는 사람이 주석을 달 수 있는 라벨링 산업이 탄생했습니다. 선택 작업을 자동화함으로써 AI는 더 저렴해지고 새로운 솔루션이 시장에 출시되는 데 걸리는 시간이 단축됩니다.
7. 사물 인터넷: IoT는 IoT의 기반이 되므로 5G 채택에 큰 영향을 미칠 것입니다. 5G의 놀라운 네트워크 속도 덕분에 시스템은 훨씬 더 빠르게 정보를 주고받을 수 있습니다. 시스템의 다른 시스템은 IoT 장치를 통해 인터넷에 연결할 수 있습니다.
8. 네트워크 보안 개선: 기술이 발전함에 따라 대부분의 애플리케이션과 장치가 스마트해지면서 상당한 기술 발전이 이루어졌습니다. 기술 전문가는 기계 학습을 활용하여 가능한 모든 사이버 공격을 차단하고 위험을 줄이는 바이러스 백신 모델을 만들 수 있습니다.
9.TinyML: TinyML은 서버에서 데이터를 주고받을 필요가 없기 때문에 알고리즘 처리 속도가 빨라지므로 더 나은 전략입니다. 이는 전체 프로세스의 시간 소모를 줄여주는 대규모 서버의 경우 특히 중요합니다.
10. 다중 모드 학습: AI는 텍스트, 비전, 음성 및 IoT 센서 데이터와 같은 단일 기계 학습 모델에서 다중 모드를 지원하는 능력이 향상되었습니다. 개발자들은 문서 이해와 같은 일반적인 작업을 개선하기 위해 패턴을 결합하는 혁신적인 방법을 찾기 시작했습니다.
위 내용은 2023년에 주목해야 할 10가지 머신러닝 트렌드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품
