목차
컴퓨터 비전의 최신 발전
컴퓨터 비전의 기회
컴퓨터 비전의 과제
컴퓨터 비전의 미래는 무엇인가요?
기술 주변기기 일체 포함 2023년 컴퓨터 비전 현황: 기회와 도전이 공존한다

2023년 컴퓨터 비전 현황: 기회와 도전이 공존한다

Apr 11, 2023 pm 04:55 PM
기계 학습 딥러닝

컴퓨터 비전 분야는 1960년대 이미지 인식에 대한 최초의 실험 이후 많은 발전을 이루었습니다.

2023년 컴퓨터 비전 현황: 기회와 도전이 공존한다

컴퓨터 비전 기술은 자율주행차부터 의료, 보안 시스템까지 광범위한 응용 분야에서 사용되고 있습니다. 2023년에는 딥 러닝, 신경망, 이미지 처리 분야의 최신 발전으로 컴퓨터 비전이 탄력을 받고 있습니다. 그러나 윤리적 고려 사항과 보다 다양하고 대표적인 데이터 세트에 대한 필요성을 포함하여 중요한 과제가 있습니다. 이 기사에서는 2023년 컴퓨터 비전의 현재 상태, 앞으로의 기회, 잠재력을 최대한 발휘하기 위해 극복해야 할 과제를 살펴봅니다.

컴퓨터 비전의 최신 발전

최근 몇 년 동안 딥 러닝은 컴퓨터 비전을 위한 강력한 도구가 되었습니다. 인간 두뇌가 정보를 처리하는 방식을 모방하기 위해 인공 신경망을 사용하는 딥 러닝 알고리즘은 이미지 인식 및 분류 분야에서 획기적인 발전을 이루는 데 사용되었습니다. 예를 들어, 2012년에는 AlexNet이라는 딥러닝 알고리즘이 ImageNet 대규모 시각 인식 대회에서 이전 최고 결과를 크게 뛰어넘는 15.3%의 기록적인 오류율을 달성했습니다.

그 이후로 딥 러닝은 가능한 것의 한계를 뛰어넘는 새로운 알고리즘과 아키텍처를 통해 지속적으로 개선되었습니다. 예를 들어, 2020년 Google 연구원들은 이전 모델보다 더 적은 수의 매개변수를 사용하면서 다양한 이미지 분류 작업에서 최첨단 결과를 달성한 EfficientNet이라는 새로운 딥 러닝 아키텍처를 도입했습니다. 그 이후로 EfficientNet은 다양한 기업과 연구자들에 의해 채택되어 컴퓨터 비전에서 딥 러닝의 힘을 강조했습니다.

최근 컴퓨터 비전이 발전한 또 다른 분야는 이미지 처리입니다. 이미지 처리 알고리즘의 발전으로 라이브 비디오 스트림에서 객체를 감지하고 추적하는 등 이미지에서 더 많은 정보를 추출하는 것이 가능해졌습니다. 예를 들어, 2018년 스탠포드 대학의 연구원들은 일련의 벤치마크에서 최첨단 성능을 달성한 YOLO라는 실시간 객체 감지 알고리즘을 개발했습니다. 이후 YOLO는 자율주행차, 안전시스템 등의 분야에서 널리 활용됐다.

컴퓨터 비전의 기회

최근 컴퓨터 비전의 발전으로 다양한 산업 분야에서 다양한 새로운 기회가 열렸습니다. 다음은 몇 가지 예입니다.

  • 헬스케어: 컴퓨터 비전은 의료 이미지를 기반으로 질병 진단, 환자 원격 모니터링, 수술 결과 개선 등 광범위한 의료 애플리케이션에 사용될 수 있습니다. 예를 들어, 2018년 스탠포드 대학의 연구원들은 피부과 전문의만큼 정확하게 피부암을 진단할 수 있는 딥러닝 알고리즘을 개발했습니다.
  • 소매: 컴퓨터 비전은 소매 업계에서 제품을 자동으로 감지 및 식별하거나 고객 행동을 추적하여 맞춤형 추천을 제공하는 등 쇼핑 경험을 개선하는 데 사용될 수 있습니다. 예를 들어, Amazon Go 매장은 컴퓨터 비전을 사용하여 고객이 매장을 돌아다니는 동안 이를 추적하고 고객이 구매하는 제품에 대해 자동으로 요금을 청구합니다.
  • 보안: 보안 시스템에서 컴퓨터 비전을 사용하여 침입자를 감지 및 추적하거나 얼굴 특징을 기반으로 개인을 식별할 수 있습니다. 예를 들어, 중국 정부는 얼굴 인식 기술을 사용하여 개인을 추적하고 행동을 모니터링하는 스카이넷(Skynet)이라는 전국적인 감시 시스템을 개발했습니다.

컴퓨터 비전의 과제

컴퓨터 비전의 기회는 엄청나지만 이 분야도 상당한 과제에 직면해 있습니다. 다음은 몇 가지 예입니다.

  • 윤리: 컴퓨터 비전은 개인 정보를 침해하는 감시 시스템이나 편견을 영속시키는 안면 인식 시스템과 같이 좋은 목적과 나쁜 목적으로 사용될 수 있습니다. 연구자와 개발자는 자신의 작업이 윤리적으로 미치는 영향을 고려하고 시스템이 개인의 권리를 존중하고 사회 정의를 촉진하도록 설계되었는지 확인해야 합니다.
  • 데이터 편향: 컴퓨터 비전 알고리즘은 훈련된 데이터만큼만 우수합니다. 데이터가 편향되거나 대표성이 없는 경우 알고리즘은 이러한 편향을 학습하여 예측에 적용합니다. 이는 특히 얼굴 인식과 같은 응용 분야에서 편견이 소외된 커뮤니티에 불균형적으로 영향을 미칠 수 있는 불공평하고 차별적인 결과로 이어질 수 있습니다. 이러한 문제를 극복하기 위해 연구자와 개발자는 데이터 세트가 다양하고 대표성이 있으며 편견이 없는지 확인해야 합니다.
  • 적대적 공격: 컴퓨터 비전 알고리즘은 공격자가 의도적으로 이미지나 비디오를 조작하여 알고리즘을 속이는 적대적 공격에도 취약합니다. 적대적 공격은 안전 시스템을 속이거나 물체를 잘못 분류하거나 심지어 자율주행차를 충돌시키는 데 사용될 수 있습니다. 이러한 문제를 해결하기 위해 연구자들은 적의 공격을 탐지하고 방어할 수 있는 새로운 알고리즘과 기술을 개발하고 있습니다.
  • 하드웨어 제한 사항: 컴퓨터 비전 알고리즘은 계산 비용이 많이 들고 많은 양의 처리 능력과 메모리가 필요합니다. 이로 인해 실제 애플리케이션에서의 확장성과 유용성이 제한됩니다. 이러한 문제를 극복하기 위해 연구자들은 딥 러닝용으로 설계된 특수 칩과 같은 보다 효율적인 알고리즘과 하드웨어 아키텍처를 개발하고 있습니다.

컴퓨터 비전의 미래는 무엇인가요?

Allied Market Research에 따르면 컴퓨터 비전 시장은 지난 몇 년 동안 여러 산업에 걸쳐 확장되어 2023년과 2030년까지 매출이 174억 달러로 성장할 것으로 예상됩니다. 10억.

딥 러닝, 신경망 및 이미지 처리 기술의 최신 발전으로 컴퓨터 비전의 향후 개발 전망은 매우 밝습니다. 컴퓨터 비전은 의료부터 소매, 보안 시스템까지 광범위한 응용 분야에서 사용되고 있으며 미래에 대한 큰 가능성을 제시합니다. 그러나 이 분야는 윤리적 고려 사항, 데이터 편견, 적대적 공격, 하드웨어 제한 등 심각한 문제에 직면해 있습니다. 컴퓨터 비전의 잠재력을 최대한 활용하려면 연구자와 개발자는 이러한 과제를 지속적으로 해결하고 시스템이 공정성, 투명성 및 사회 정의를 촉진하도록 설계되었는지 확인해야 합니다.

위 내용은 2023년 컴퓨터 비전 현황: 기회와 도전이 공존한다의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. 이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. Jun 01, 2024 am 10:58 AM

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

학습 곡선을 통해 과적합과 과소적합 식별 학습 곡선을 통해 과적합과 과소적합 식별 Apr 29, 2024 pm 06:50 PM

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. May 30, 2024 am 09:35 AM

이전에 작성했던 오늘은 딥 러닝 기술이 복잡한 환경에서 비전 기반 SLAM(동시 위치 파악 및 매핑)의 성능을 향상할 수 있는 방법에 대해 논의합니다. 심층 특징 추출과 깊이 일치 방법을 결합하여 저조도 조건, 동적 조명, 질감이 약한 영역 및 심한 지터와 같은 까다로운 시나리오에서 적응을 향상하도록 설계된 다목적 하이브리드 시각적 SLAM 시스템을 소개합니다. 우리 시스템은 확장 단안, 스테레오, 단안 관성 및 스테레오 관성 구성을 포함한 여러 모드를 지원합니다. 또한 시각적 SLAM을 딥러닝 방법과 결합하여 다른 연구에 영감을 주는 방법도 분석합니다. 공개 데이터 세트 및 자체 샘플링 데이터에 대한 광범위한 실험을 통해 위치 정확도 및 추적 견고성 측면에서 SL-SLAM의 우수성을 입증합니다.

우주탐사 및 인간정주공학 분야 인공지능의 진화 우주탐사 및 인간정주공학 분야 인공지능의 진화 Apr 29, 2024 pm 03:25 PM

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

설명 가능한 AI: 복잡한 AI/ML 모델 설명 설명 가능한 AI: 복잡한 AI/ML 모델 설명 Jun 03, 2024 pm 10:08 PM

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. May 30, 2024 pm 01:24 PM

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.

See all articles