최적의 운송과 공정성의 적용
번역가 | Li Rui
리뷰어 | Sun Shujuan
최적의 운송은 경제학에서 시작되었으며 이제는 자원을 가장 잘 배분하는 방법으로 개발되었습니다. 최적 수송 이론의 기원은 1781년으로 거슬러 올라갑니다. 당시 프랑스 과학자 Gaspard Monge는 "지구를 움직이는" 방법과 나폴레옹 군대를 위한 요새 건설 방법을 연구했습니다. 종합적으로, 최적의 운송이란 자원이 이동해야 하는 총 거리를 최소화하면서 모든 자원(철광석 등)을 출발점(광산)에서 끝점(제철소)으로 이동하는 방법에 대한 문제입니다. 수학적으로 연구자들은 출발지와 해당 목적지 사이의 전체 거리를 최소화하면서 각 출발지를 목적지에 매핑하는 함수를 찾고 싶었습니다. 무해한 설명에도 불구하고 멍거의 개념으로 알려진 문제의 원래 개념에 대한 진전은 거의 200년 동안 정체되었습니다.
1940년대 소련 수학자 레오니드 칸토로비치(Leonid Kantorovich)는 문제의 공식화를 현대 버전으로 조정했는데, 이는 현재 몽게 칸토로프(Monge Kantorov)의 이론으로 알려져 있으며, 이는 해결책을 향한 첫 번째 단계였습니다. 여기서 참신한 점은 동일한 광산의 일부 철광석이 다른 철강 공장에 공급될 수 있다는 것입니다. 예를 들어, 광산에서 나오는 철광석의 60%는 철강 공장에 제공될 수 있고, 광산에서 나오는 철광석의 나머지 40%는 다른 철강 공장에 제공될 수 있습니다. 수학적으로 이는 더 이상 함수가 아닙니다. 이제 동일한 출발지가 잠재적으로 여러 대상에 매핑되기 때문입니다. 이에 반해, 이는 출발지 분포와 도착지 분포 사이의 결합으로 알려져 있으며, 아래 그림과 같이 파란색 분포(원산지)에서 광산을 선택하고 그림을 따라 수직으로 이동하면 철광석이 어디로 보내지는지를 알 수 있습니다. 철강 공장(목적지).
이 새로운 개발의 일환으로 Kantorivich는 Wasserstein 거리라는 중요한 개념을 도입했습니다. 지도의 두 지점 사이의 거리와 유사하게 Wasserstein 거리(원래 시나리오에서 영감을 받은 불도저 거리라고도 함)는 이 경우 파란색과 자홍색 분포와 같은 두 분포 사이의 거리를 측정합니다. 모든 철 광산이 모든 철 공장에서 멀리 떨어져 있으면 광산 분포(위치)와 철강 공장 분포 사이의 Wasserstein 거리가 커집니다. 이러한 새로운 개선에도 불구하고 철광석 자원을 운송하는 최선의 방법이 있는지 여부는 물론 어떤 방법인지는 여전히 불분명합니다. 마침내 1990년대에 수학적 분석과 최적화의 개선으로 문제가 부분적으로 해결되면서 이론이 급속히 발전하기 시작했습니다. 21세기에는 최적의 교통수단이 입자물리학, 유체역학, 심지어 통계학, 기계학습 등 다른 분야로 확산되기 시작했습니다.
현대 시대의 최적 운송
새로운 이론이 폭발적으로 증가하면서 최적 운송은 지난 20년 동안 수많은 새로운 통계 및 인공 지능 알고리즘의 중심이 되었습니다. 거의 모든 통계 알고리즘에서 데이터는 기본 확률 분포를 갖는 것으로 명시적으로 또는 암시적으로 모델링됩니다. 예를 들어, 개인 소득에 대한 데이터가 여러 국가에서 수집되면 각 국가에서 해당 인구의 소득에 대한 확률 분포가 발생합니다. 인구의 소득 분포를 기준으로 두 국가를 비교하려면 두 분포 간의 격차를 측정하는 방법이 필요합니다. 이것이 바로 교통 최적화(특히 Wasserstein 거리)가 데이터 과학에서 매우 유용한 이유입니다. 그러나 Wasserstein 거리는 두 확률 분포 사이의 거리를 측정하는 유일한 방법은 아닙니다. 실제로 물리학 및 정보 이론과의 연결로 인해 L-2 거리와 Kullback-Leibler(KL) 발산이라는 두 가지 옵션이 역사적으로 더 일반적이었습니다. 이러한 대안에 비해 Wasserstein 거리의 주요 장점은 거리를 계산할 때 값과 확률을 모두 고려하는 반면 L-2 거리와 KL 발산은 확률만 고려한다는 것입니다. 아래 이미지는 세 가지 가상 국가의 소득에 대한 인공 데이터 세트의 예를 보여줍니다.
이 경우 분포가 겹치지 않으므로 파란색과 자홍색 분포 사이의 L-2 거리(또는 KL 발산)는 파란색과 녹색 분포 사이의 L-2 거리와 거의 같습니다. . 반면, 파란색과 마젠타 분포 사이의 Wasserstein 거리는 파란색과 녹색 분포 사이의 Wasserstein 거리보다 훨씬 작을 것입니다. 그 이유는 그 값들 사이에 상당한 차이(수평 분리)가 있기 때문입니다. Wasserstein 거리의 이러한 속성은 분포 간의 차이, 특히 데이터 세트 간의 차이를 정량화하는 데 이상적입니다.
최적의 운송으로 공정성 달성
매일 대량의 데이터가 수집되면서 머신러닝은 많은 산업 분야에서 점점 더 보편화되고 있으며, 데이터 과학자들은 자신의 분석과 알고리즘이 이러한 현상을 지속시키지 않도록 점점 더 주의해야 합니다. 데이터의 일부 편차 및 편차는 영구적입니다. 예를 들어 주택 모기지 승인 데이터 세트에 신청자의 인종에 대한 정보가 포함되어 있지만 수집 과정에서 사용된 방법이나 무의식적인 편견으로 인해 소수자가 차별을 받은 경우 해당 데이터에 대해 훈련된 모델은 근본적인 편차를 반영합니다.
배송을 최적화하면 이러한 편견을 완화하고 두 가지 측면에서 공정성을 향상하는 데 도움이 될 수 있습니다. 첫 번째이자 가장 간단한 방법은 Wasserstein 거리를 사용하여 데이터 세트에 잠재적인 편향이 있는지 확인하는 것입니다. 예를 들어, 여성에게 승인된 대출 금액 분포와 남성에게 승인된 대출 금액 분포 사이의 Wasserstein 거리를 추정할 수 있습니다. Wasserstein 거리가 매우 크면, 즉 통계적으로 유의하면 잠재적인 편향이 의심될 수 있습니다. 두 그룹 사이에 차이가 있는지 테스트하는 이러한 아이디어는 통계학에서 2-표본 가설 테스트로 알려져 있습니다.
또는 기본 데이터 세트 자체가 편향된 경우 모델의 공정성을 강화하기 위해 최적 배송을 사용할 수도 있습니다. 이는 많은 실제 데이터 세트가 어느 정도 편향을 나타내고 편향되지 않은 데이터를 수집하는 데 비용이 많이 들고 시간이 많이 걸리거나 실행 불가능할 수 있으므로 실용적인 관점에서 유용합니다. 따라서 아무리 불완전하더라도 기존 데이터를 사용하고 모델이 이러한 편향을 완화하도록 노력하는 것이 더 실용적입니다. 이는 강력한 인구학적 동등성이라는 모델에 제약 조건을 적용하여 수행됩니다. 이는 모델 예측이 민감한 속성과 통계적으로 독립적이 되도록 강제합니다. 한 가지 접근 방식은 모델 예측의 분포를 민감한 속성에 의존하지 않는 조정된 예측의 분포에 매핑하는 것입니다. 그러나 예측을 조정하면 모델의 성능과 정확도도 변경되므로 모델 성능과 모델이 민감한 속성(예: 공정성)에 의존하는 정도 간에는 상충 관계가 있습니다.
예측을 가능한 한 적게 변경하여 최적의 모델 성능을 보장하는 동시에 새로운 예측이 민감한 속성과 무관하도록 보장하여 최적의 배송을 보장합니다. 이 조정된 모델에 의해 예측된 새로운 분포를 Wasserstein 중심이라고 하며 지난 10년 동안 많은 연구 주제였습니다. Wasserstein 무게 중심은 다른 모든 분포까지의 총 거리를 최소화한다는 점에서 확률 분포의 평균과 유사합니다. 아래 이미지는 Wasserstein 무게 중심(빨간색)과 함께 세 가지 분포(녹색, 파란색, 자홍색)를 보여줍니다.
위의 예에서 세 가지 가능한 값(미혼(파란색), 기혼)을 가질 수 있는 민감한 속성(예: 결혼 여부)이 포함된 데이터 세트를 기반으로 누군가의 연령과 소득을 예측하도록 모델이 구축되었다고 가정합니다. (녹색) 및 사별/이혼(자홍색). 산점도는 각기 다른 값에 대한 모델 예측의 분포를 보여줍니다. 그러나 새 모델의 예측이 사람의 결혼 상태를 알 수 없도록 이러한 값을 조정하려는 경우 이러한 각 분포는 최적의 운송을 사용하여 빨간색으로 무게 중심에 매핑될 수 있습니다. 모든 가치가 동일한 분포에 매핑되기 때문에 더 이상 소득과 연령을 기준으로 개인의 결혼 여부를 판단할 수 없으며 그 반대의 경우도 마찬가지입니다. 무게 중심은 모델의 충실도를 최대한 유지합니다.
비즈니스 및 정부 의사 결정에 사용되는 데이터 및 기계 학습 모델이 점점 더 보편화되면서 이러한 모델의 공정한 적용을 보장하는 방법에 대한 새로운 사회적, 윤리적 질문이 등장하게 되었습니다. 많은 데이터 세트에는 수집 방식의 특성으로 인해 일종의 편향이 포함되어 있으므로 이에 대해 훈련된 모델이 이러한 편향이나 역사적 차별을 악화시키지 않는 것이 중요합니다. 최적의 운송은 최근 몇 년 동안 증가하고 있는 이 문제를 해결하는 하나의 방법일 뿐입니다. 오늘날 최적의 교통 지도와 거리를 계산하는 빠르고 효율적인 방법이 있으므로 이 접근 방식은 최신 대규모 데이터 세트에 적합합니다. 사람들이 데이터 기반 모델과 통찰력에 점점 더 의존함에 따라 공정성은 데이터 과학의 핵심 문제가 되어 왔으며 앞으로도 계속 그럴 것이며 최적의 교통은 이 목표를 달성하는 데 중요한 역할을 할 것입니다.
원제: Optimal Transport and its Application to Fairness, 저자: Terrence Alsup
위 내용은 최적의 운송과 공정성의 적용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

7월 5일 이 웹사이트의 소식에 따르면 글로벌파운드리는 올해 7월 1일 보도자료를 통해 타고르 테크놀로지(Tagore Technology)의 전력질화갈륨(GaN) 기술 및 지적재산권 포트폴리오 인수를 발표하고 자동차와 인터넷 시장 점유율 확대를 희망하고 있다고 밝혔다. 더 높은 효율성과 더 나은 성능을 탐구하기 위한 사물 및 인공 지능 데이터 센터 응용 분야입니다. 생성 AI와 같은 기술이 디지털 세계에서 계속 발전함에 따라 질화갈륨(GaN)은 특히 데이터 센터에서 지속 가능하고 효율적인 전력 관리를 위한 핵심 솔루션이 되었습니다. 이 웹사이트는 이번 인수 기간 동안 Tagore Technology의 엔지니어링 팀이 GLOBALFOUNDRIES에 합류하여 질화갈륨 기술을 더욱 개발할 것이라는 공식 발표를 인용했습니다. G
