목차
1. 그래프 신경망 소개" >1. 그래프 신경망 소개
1. 왜 그래프를 공부하나요? " >1. 왜 그래프를 공부하나요?
2. 그래프 구조화된 데이터는 어디에나 있습니다." >2. 그래프 구조화된 데이터는 어디에나 있습니다.
3. 그래프 머신러닝의 최근 동향 " >3. 그래프 머신러닝의 최근 동향
4 그래프 신경망의 간략한 역사" >4 그래프 신경망의 간략한 역사
2. 그래프 신경망의 기초 " > 2. 그래프 신경망의 기초
1. 머신러닝의 라이프사이클 " > 1. 머신러닝의 라이프사이클
2. 그래프에서의 특징 학습" >2. 그래프에서의 특징 학습
3. 그래프 신경망의 기초" >3. 그래프 신경망의 기초
4. 그래프 신경망의 기본 모델 " >4. 그래프 신경망의 기본 모델
3. 그래프 신경망의 개척자 " > 3. 그래프 신경망의 개척자
1. 그래프 구조 학습" >1. 그래프 구조 학습
2. 기타 프론티어" >2. 기타 프론티어
2. 컴퓨터 비전에 그래프 신경망 적용" >2. 컴퓨터 비전에 그래프 신경망 적용
3. 자연어 처리에 그래프 신경망 적용" >3. 자연어 처리에 그래프 신경망 적용
4. 프로그램 분석에 그래프 신경망 적용" >4. 프로그램 분석에 그래프 신경망 적용
5. 스마트 시티에 그래프 신경망 적용" >5. 스마트 시티에 그래프 신경망 적용
Q2: GNN과 인과 학습을 결합할 수 있나요? 결합하는 방법? " >Q2: GNN과 인과 학습을 결합할 수 있나요? 결합하는 방법?
Q3: GNN의 해석 가능성과 기존 머신 러닝의 해석 가능성 사이의 차이점과 연관성은 무엇입니까? " >Q3: GNN의 해석 가능성과 기존 머신 러닝의 해석 가능성 사이의 차이점과 연관성은 무엇입니까?
Q4: 그래프 데이터베이스를 기반으로 그래프 컴퓨팅의 강력한 기능을 사용하여 GNN을 직접 훈련하고 추론하는 방법은 무엇입니까? " >Q4: 그래프 데이터베이스를 기반으로 그래프 컴퓨팅의 강력한 기능을 사용하여 GNN을 직접 훈련하고 추론하는 방법은 무엇입니까?
기술 주변기기 일체 포함 GNN의 기초, 프론티어 및 적용

GNN의 기초, 프론티어 및 적용

Apr 11, 2023 pm 11:40 PM
기계 학습 신경망

GNN의 기초, 프론티어 및 적용

최근 몇 년 동안 그래프 신경망(GNN)은 빠르고 놀라운 발전을 이루었습니다. 그래프 딥러닝, 그래프 표현 학습(그래프 표현 학습) 또는 기하학적 딥러닝이라고도 알려진 그래프 신경망은 머신러닝, 특히 딥러닝 분야에서 가장 빠르게 성장하고 있는 연구 주제입니다. 이번 공유의 제목은 "Basics, Frontiers and Application of GNN"이며, Wu Lingfei, Cui Peng, Pei Jian 및 Zhao 학자가 편찬한 종합 도서 "Basics, Frontiers and Application of Graph Neural Networks"의 일반적인 내용을 주로 소개합니다. 리앙.

1. 그래프 신경망 소개

1. 왜 그래프를 공부하나요?

GNN의 기초, 프론티어 및 적용

다이어그램은 복잡한 시스템을 설명하고 모델링하기 위한 보편적인 언어입니다. 그래프 자체는 복잡하지 않으며 주로 간선과 노드로 구성됩니다. 노드를 사용하여 모델링하려는 개체를 나타낼 수 있으며 가장자리를 사용하여 두 노드 간의 관계 또는 유사성을 나타낼 수 있습니다. 우리가 흔히 그래프 신경망이나 그래프 기계학습이라고 부르는 것은 일반적으로 그래프의 구조와 엣지와 노드의 정보를 알고리즘의 입력으로 사용해 원하는 결과를 출력하는 방식이다. 예를 들어, 검색 엔진에서 쿼리를 입력하면 엔진은 쿼리 정보, 사용자 정보 및 일부 문맥 정보를 기반으로 개인화된 검색 결과를 반환합니다. 이 정보는 자연스럽게 그래프로 구성될 수 있습니다.

GNN의 기초, 프론티어 및 적용

2. 그래프 구조화된 데이터는 어디에나 있습니다.

GNN의 기초, 프론티어 및 적용

그래프 구조화된 데이터는 인터넷, 소셜 네트워크 등 어디에서나 찾을 수 있습니다. 또한 현재 매우 인기 있는 단백질 발견 분야에서 사람들은 그래프를 사용하여 기존 단백질을 설명하고 모델링하고 새로운 그래프를 생성하여 사람들이 신약을 발견하는 데 도움을 줄 것입니다. 그래프를 사용하여 복잡한 프로그램 분석을 수행할 수도 있고 컴퓨터 비전에서 고급 추론을 수행할 수도 있습니다.

3. 그래프 머신러닝의 최근 동향

GNN의 기초, 프론티어 및 적용

그래프 머신러닝은 지난 20년간 아주 새로운 주제가 아니었고 항상 상대적으로 틈새 시장이었습니다. 전에. 2016년부터 현대적인 그래프 신경망 관련 논문이 등장하면서 그래프 머신러닝이 인기 있는 연구 방향이 되었습니다. 이 새로운 세대의 그래프 기계 학습 방법은 데이터 자체와 데이터 사이의 정보를 더 잘 학습할 수 있으므로 데이터를 더 잘 표현할 수 있고 궁극적으로 더 중요한 작업을 더 잘 완료할 수 있는 것으로 나타났습니다.

4 그래프 신경망의 간략한 역사

GNN의 기초, 프론티어 및 적용

그래프 신경망과 관련된 최초의 논문은 딥러닝이 대중화되기 전인 2009년에 등장했습니다. 현대 그래프 신경망에 관한 논문은 2016년에 등장했으며 초기 그래프 신경망을 개선한 것이었습니다. 이후 GCN의 등장으로 그래프 신경망의 급속한 발전이 촉진됐다. 2017년 이후에는 새로운 알고리즘이 대거 등장했다. 그래프 신경망의 알고리즘이 점점 더 성숙해짐에 따라 2019년부터 업계에서는 이러한 알고리즘을 사용하여 일부 실제 문제를 해결하려고 노력해 왔으며 동시에 문제 해결의 효율성을 높이기 위해 많은 오픈 소스 도구가 개발되었습니다. 2021년부터 이 "Basics, Frontiers and Application of Graph Neural Networks"를 포함하여 그래프 신경망과 관련된 많은 책이 저술되었습니다.

GNN의 기초, 프론티어 및 적용

책 『그래프 신경망의 기초, 프론티어 및 응용』은 그래프 신경망 분야의 핵심 개념과 기술은 물론 최첨단 연구개발을 체계적으로 소개하고, 다양한 분야의 응용 사례를 소개합니다. 학계와 업계의 독자들이 이로부터 혜택을 얻을 수 있습니다.

2. 그래프 신경망의 기초

1. 머신러닝의 라이프사이클

GNN의 기초, 프론티어 및 적용

위 그림은 피쳐러닝이 매우 중요한 머신러닝의 라이프사이클을 반영한 것입니다. link. 주요 작업은 원시 데이터를 구조화된 데이터로 변환하는 것입니다. 딥러닝이 등장하기 전에는 누구나 주로 Feature Engineering을 통해 이 작업을 수행했습니다. 딥러닝이 등장한 후, 이러한 엔드투엔드 머신러닝 방식이 주류가 되기 시작했습니다.

2. 그래프에서의 특징 학습

GNN의 기초, 프론티어 및 적용

목표는 딥 러닝과 관련되거나 독립적인 특징 학습 방법을 설계하는 것입니다. 원본 그래프의 노드를 고차원 공간으로 이동하여 노드의 임베딩 표현을 얻은 다음 다운스트림 작업을 완료합니다.

3. 그래프 신경망의 기초

GNN의 기초, 프론티어 및 적용

그래프 신경망에서 학습해야 하는 표현에는 두 가지 유형이 있습니다.

  • 그래프 노드 표현

그래프의 행렬과 노드의 벡터 표현을 입력으로 사용하고 노드의 벡터 표현을 지속적으로 학습하고 업데이트하는 필터 작업이 필요합니다. 현재 더 일반적인 필터 작업에는 스펙트럼 기반, 공간 기반, 주의 기반 및 반복 기반이 포함됩니다.

  • 그래프의 표현

에는 그래프의 행렬과 노드의 벡터 표현을 입력으로 받아 지속적으로 학습하여 그래프의 행렬을 얻는 풀 연산이 필요합니다. 더 적은 수의 노드를 포함하는 그래프. 해당 노드의 벡터 표현은 최종적으로 전체 그래프를 표현하는 그래프 수준의 벡터 표현을 얻습니다. 현재 더 일반적인 풀 작업에는 평면 그래프 풀링(예: Max, Ave, Min) 및 계층적 그래프 풀링(예: Diffpool)이 포함됩니다.

4. 그래프 신경망의 기본 모델

GNN의 기초, 프론티어 및 적용

머신러닝 분야에는 상황학습(Context Learning)이라는 개념이 있습니다. 그래프 신경망에서 노드의 컨텍스트는 이웃 노드입니다. 노드의 이웃 노드를 사용하여 이 노드의 벡터 표현을 학습할 수 있습니다.

GNN의 기초, 프론티어 및 적용

이런 방식으로 각 노드는 계산 그래프를 정의할 수 있습니다.

GNN의 기초, 프론티어 및 적용

계산 그래프를 계층화할 수 있습니다. 첫 번째 계층은 정보를 계층별로 전달하고 집계하여 모든 노드의 벡터 표현을 학습할 수 있습니다.

GNN의 기초, 프론티어 및 적용

GNN의 기초, 프론티어 및 적용


GNN의 기초, 프론티어 및 적용

위 그림은 그래프 신경망 모델 학습의 주요 단계를 대략적으로 설명하며, 주로 다음 네 단계를 포함합니다.

  • 집계 함수 정의
  • 일괄 노드를 훈련합니다. 예를 들어 한 번에 여러 계산 그래프를 훈련할 수 있습니다. 학습되었습니다(학습은 집계 함수이므로 새 노드의 벡터 표현을 얻기 위해 학습된 집계 함수와 벡터 표현을 사용할 수 있습니다).
  • 위 그림
은 평균을 집계 함수로 사용한 예입니다. k번째 레이어의 노드 v의 벡터 표현은 이웃 노드의 벡터 표현에 따라 달라집니다. 이전 레이어의 평균과 이전 레이어의 자체 벡터 표현입니다.

GNN의 기초, 프론티어 및 적용

위 내용을 요약하자면, 그래프 신경망의 주요 포인트는 인코더에서의 매개변수 공유를 고려하여 이웃 노드의 정보를 집계하여 대상 노드의 벡터 표현을 생성하는 것입니다. 추론 학습도 고려합니다. 5. 그래프 신경망의 인기 모델

GNN의 기초, 프론티어 및 적용

그래프 신경망의 고전적이거나 인기 있는 알고리즘은 기본적으로 감독 그래프 신경망과 비지도 그래프 신경망으로 나눌 수 있는 서로 다른 집계 함수 또는 필터 함수를 사용합니다. 네트워크. 지도 그래프 신경망.

GCN

GNN의 기초, 프론티어 및 적용

은 가장 고전적인 알고리즘 중 하나이며,

그래프에 직접 작용하고 구조 정보를 활용할 수 있습니다. 위 그림과 같이 모델 속도, 실용성, 안정성 향상에 중점을 두고 GCN도 여러 번의 반복을 거쳤습니다. GCN 논문은 획기적인 의미를 가지며 그래프 신경망의 토대를 마련했습니다.

GNN의 기초, 프론티어 및 적용

MPNN핵심

은 그래프 컨볼루션을 정보 전달로 변환하는 과정으로, 집계 함수와 업데이트 함수를 정의합니다. 이 알고리즘은 간단하고 일반적인 알고리즘이지만 효율적이지 않습니다.

GNN의 기초, 프론티어 및 적용

GraphSage 는 산업 수준의 알고리즘입니다. 학교 노드의 벡터 표현을 얻기 위해 샘플링을 사용하여 특정 수의 이웃 노드를 얻습니다.

GAT

어텐션 아이디어 도입이 핵심입니다. 정보 전송 과정에서 엣지의 가중치를 동적으로 학습하는 것입니다.

GNN의 기초, 프론티어 및 적용

위에 소개된 알고리즘 외에도 GGNN도 있는데, 그 특징은 출력이 여러 노드일 수 있다는 것입니다. 관심이 있다면 관련 논문을 읽어보세요.

"Basics, Frontiers and Application of Graph Neural Networks" 책의 5장, 6장, 7장, 8장에서는 각각 그래프 신경망을 평가하는 방법, 그래프 신경망의 확장성, 그래프 신경망에 대한 설명을 소개합니다. 그래프 신경망의 속성과 적대적 안정성에 관심이 있다면 책에서 해당 장을 읽어보세요.

3. 그래프 신경망의 개척자

1. 그래프 구조 학습

GNN의 기초, 프론티어 및 적용

그래프 신경망에는 그래프 구조 데이터가 필요한데, 주어진 그래프 구조가 최적인지 의심스럽습니다. 때로는 노이즈가 많을 수도 있고, 많은 애플리케이션에 그래프 구조의 데이터가 없거나 심지어 원래 기능만 있을 수도 있습니다.

GNN의 기초, 프론티어 및 적용

그래서 최적의 그래프 표현과 그래프 노드 표현을 학습하려면 그래프 신경망을 사용해야 합니다.

GNN의 기초, 프론티어 및 적용

그래프 학습을 노드 간 유사성 학습으로 변환하고, 정규화를 통해 원활성, 시스템 속성 및 연결성을 제어하고, 반복 벡터 표현을 통해 그래프의 구조와 그래프를 세분화합니다.

GNN의 기초, 프론티어 및 적용

GNN의 기초, 프론티어 및 적용

GNN의 기초, 프론티어 및 적용

실험 데이터는 이 접근 방식의 장점을 보여줄 수 있습니다.

GNN의 기초, 프론티어 및 적용

그래프의 시각화 결과를 통해, 학습된 그래프는 유사한 개체를 함께 묶는 경향이 있음을 알 수 있으며 이는 어느 정도 해석 가능성이 있습니다.

2. 기타 프론티어

"Basics, Frontiers and Application of Graph Neural Networks"에는 다양한 시나리오에서 중요한 응용 분야가 있는 다음과 같은 최첨단 연구도 소개되어 있습니다. 이미지 분류;

  • 링크 예측;
  • 이미지 생성; ​​사진 일치
  • 동적 그래프 신경; 네트워크;
  • 이종 그래프 신경망;
  • 그래프 신경망용 AutoML
  • 자기 지도 학습.
  • 4. 그래프 신경망 적용
  • 1. 추천 시스템에 그래프 신경망 적용
  • 세션 정보를 사용하여 이종 글로벌 그래프를 구성한 다음 그래프 신경망을 사용할 수 있습니다. 네트워크 사용자나 항목의 벡터 표현을 얻는 방법을 배우고 이 벡터 표현을 사용하여 개인화된 추천을 제공합니다.

    2. 컴퓨터 비전에 그래프 신경망 적용

    GNN의 기초, 프론티어 및 적용

    그래프 신경망을 통해 사물의 역동적인 변화 과정을 추적하고 영상에 대한 이해를 심화할 수 있습니다.

    3. 자연어 처리에 그래프 신경망 적용

    GNN의 기초, 프론티어 및 적용

    그래프 신경망을 사용하여 자연어의 고급 정보를 이해할 수 있습니다.

    4. 프로그램 분석에 그래프 신경망 적용

    GNN의 기초, 프론티어 및 적용

    5. 스마트 시티에 그래프 신경망 적용

    GNN의 기초, 프론티어 및 적용

    5.

    Q1: GNN은 차세대 딥러닝을 위한 중요한 방법인가요?

    A1: 그래프 신경망은 매우 중요한 분야이며, 그래프 신경망과 보조를 맞추는 것이 Transformer입니다. 그래프 신경망의 유연성을 고려하면 그래프 신경망과 Transformer를 서로 결합하여 더 큰 장점을 활용할 수 있습니다.

    Q2: GNN과 인과 학습을 결합할 수 있나요? 결합하는 방법?

    A2: 인과 학습에서 중요한 연결고리는 인과 그래프인데, 인과 그래프와 GNN이 자연스럽게 결합될 수 있습니다. 인과 학습의 어려움은 데이터 크기가 작다는 것입니다. GNN의 기능을 사용하면 인과 그래프를 더 잘 학습할 수 있습니다.

    Q3: GNN의 해석 가능성과 기존 머신 러닝의 해석 가능성 사이의 차이점과 연관성은 무엇입니까?

    A3: "Basics, Frontiers and Application of Graph Neural Networks" 책에서 자세히 소개됩니다.

    Q4: 그래프 데이터베이스를 기반으로 그래프 컴퓨팅의 강력한 기능을 사용하여 GNN을 직접 훈련하고 추론하는 방법은 무엇입니까?

    A4: 현재 통합 그래프 컴퓨팅 플랫폼에 대한 모범 사례는 없습니다. 관련 방향을 모색하는 일부 신생 기업과 과학 연구팀이 있습니다. 이는 매우 가치 있고 도전적인 연구 방향이 될 것입니다. 영역을 영역으로 나눕니다.

위 내용은 GNN의 기초, 프론티어 및 적용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. 크로스 플레이가 있습니까?
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. 이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. Jun 01, 2024 am 10:58 AM

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

학습 곡선을 통해 과적합과 과소적합 식별 학습 곡선을 통해 과적합과 과소적합 식별 Apr 29, 2024 pm 06:50 PM

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

투명한! 주요 머신러닝 모델의 원리를 심층적으로 분석! 투명한! 주요 머신러닝 모델의 원리를 심층적으로 분석! Apr 12, 2024 pm 05:55 PM

일반인의 관점에서 보면 기계 학습 모델은 입력 데이터를 예측된 출력에 매핑하는 수학적 함수입니다. 보다 구체적으로, 기계 학습 모델은 예측 출력과 실제 레이블 사이의 오류를 최소화하기 위해 훈련 데이터로부터 학습하여 모델 매개변수를 조정하는 수학적 함수입니다. 기계 학습에는 로지스틱 회귀 모델, 의사결정 트리 모델, 지원 벡터 머신 모델 등 다양한 모델이 있습니다. 각 모델에는 적용 가능한 데이터 유형과 문제 유형이 있습니다. 동시에, 서로 다른 모델 간에는 많은 공통점이 있거나 모델 발전을 위한 숨겨진 경로가 있습니다. 연결주의 퍼셉트론을 예로 들면, 퍼셉트론의 은닉층 수를 늘려 심층 신경망으로 변환할 수 있습니다. 퍼셉트론에 커널 함수를 추가하면 SVM으로 변환할 수 있다. 이 하나

우주탐사 및 인간정주공학 분야 인공지능의 진화 우주탐사 및 인간정주공학 분야 인공지능의 진화 Apr 29, 2024 pm 03:25 PM

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

설명 가능한 AI: 복잡한 AI/ML 모델 설명 설명 가능한 AI: 복잡한 AI/ML 모델 설명 Jun 03, 2024 pm 10:08 PM

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. May 30, 2024 pm 01:24 PM

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.

See all articles