목차
캡스톤 프로젝트의 설계 목표
프로젝트 데이터 세트 소스
이미지 출처
최종 진단은 어디서 하나요?
망막 이미지 분류에 딥 러닝 적용
데이터 측정항목
사용된 방법 - 교차 엔트로피 손실 함수
교차 엔트로피란 무엇인가요?
기술 주변기기 일체 포함 망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

Apr 12, 2023 am 10:37 AM
딥러닝 통합 모델

번역자 | Zhu Xianzhong

Reviewer | Sun Shujuan

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 1: 원작자가 직접 디자인한 Iluminado 프로젝트 표지

2019년에 세계보건기구(WHO)는 전 세계적으로 시각 장애가 있는 사람은 약 22억 명에 달하며, 그 중 최소 10억 명은 예방할 수 있거나 아직 치료를 받고 있습니다. 안과 진료와 관련하여 세계는 예방, 치료, 재활 서비스의 보장 범위와 품질의 불평등을 포함하여 많은 문제에 직면해 있습니다. 훈련된 안과 진료 직원이 부족하고 안과 진료 서비스가 주요 의료 시스템에 제대로 통합되지 않습니다. 나의 목표는 이러한 문제를 함께 해결하기 위한 행동을 장려하는 것입니다. 이 글에서 소개하는 프로젝트는 제가 현재 진행하고 있는 데이터 사이언스 캡스톤 프로젝트인 Iluminado의 일부입니다.

캡스톤 프로젝트의 설계 목표

이 기사 프로젝트를 작성하는 목적은 궁극적으로 저소득층 가족이 쉽게 접근할 수 있고 저렴한 비용으로 초기 질병 위험 진단을 수행할 수 있는 딥러닝 앙상블 모델을 훈련하는 것입니다. 내 모델 절차를 사용하여 안과 의사는 망막 안저 사진을 기반으로 즉각적인 개입이 필요한지 여부를 결정할 수 있습니다.

프로젝트 데이터 세트 소스

OphthAI는 Retinal Fundus Multi-Disease Image Dataset("RFMiD")라는 공개적으로 사용 가능한 이미지 데이터 세트를 제공합니다. 여기에는 3,200개의 이미지가 포함되어 있습니다. 안저 이미지는 세 개의 서로 다른 안저 카메라로 촬영되었으며 주석이 추가되었습니다. 두 명의 수석 망막 전문가가 판결된 합의를 바탕으로 작성했습니다.

이 이미지는 2009~2010년에 수행된 수천 건의 검사에서 추출되었으며, 일부 고품질 이미지와 상당히 낮은 품질의 이미지를 모두 선택하여 데이터세트를 더욱 어렵게 만들었습니다.

데이터 세트는 훈련 세트(60% 또는 1920개 이미지), 평가 세트(20% 또는 640개 이미지) 및 테스트 세트(20% 및 640개 이미지)를 포함하여 세 부분으로 나뉩니다. 평균적으로 훈련 세트, 평가 세트, 테스트 세트에서 질병이 있는 사람의 비율은 각각 60±7%, 20±7%, 20±5%였습니다. 이 데이터 세트의 기본 목적은 일상적인 임상 실습에서 발생하는 다양한 안과 질환을 해결하는 것이며, 총 45개의 질병/병리 범주가 식별됩니다. 이러한 레이블은 RFMiD_Training_Labels.CSV, RFMiD_Validation_Labels.SSV 및 RFMiD_Testing_Labels.CSV의 세 가지 CSV 파일에서 찾을 수 있습니다.

이미지 출처

아래 이미지는 안저 카메라라는 도구를 사용하여 촬영되었습니다. 안저 카메라는 눈 뒤쪽의 망막층인 안저를 촬영하는 데 사용되는 플래시 카메라에 부착된 특수 저배율 현미경입니다.

요즘에는 대부분의 안저 카메라가 휴대용이므로 환자는 렌즈를 직접 들여다보기만 하면 됩니다. 그 중 밝게 깜박이는 부분은 안저 영상이 촬영되었음을 나타냅니다.

휴대용 카메라는 다양한 위치로 휴대할 수 있고 휠체어 사용자와 같이 특별한 도움이 필요한 환자를 수용할 수 있다는 장점이 있습니다. 또한 필요한 교육을 받은 직원이라면 누구나 카메라를 작동할 수 있어 소외된 당뇨병 환자가 연간 검진을 빠르고 안전하며 효율적으로 받을 수 있습니다.

안저 망막 영상 시스템의 사진 상황:

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 2: 각 시각적 특성에 따라 촬영된 이미지: (a) 당뇨병성 망막증(DR), (b) 연령 관련 황반 변성(ARMD) 및 (c) 중간 정도의 헤이즈(MH).

최종 진단은 어디서 하나요?

초기 검진 과정은 딥러닝을 통해 보조할 수 있지만, 최종 진단은 세극등 검사를 통해 안과 의사가 내립니다.

이 과정은 생체현미경 진단이라고도 하며 살아있는 세포를 검사하는 과정입니다. 의사는 환자의 눈에 이상이 있는지 확인하기 위해 현미경 검사를 실시할 수 있습니다.

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 3: 세극등 검사 그림

망막 이미지 분류에 딥 러닝 적용

기존 기계 학습 알고리즘과 달리 심층 합성곱 신경망(CNN)은 다층 모델을 사용하여 자동 추출 및 분류를 수행할 수 있습니다. 원시 데이터의 기능.

최근 학계에서는 컨볼루셔널 신경망(CNN)을 활용해 당뇨병성 망막증, 녹내장 등 다양한 안구 질환을 비정상적인 결과(AUROC>0.9)로 식별하는 방법에 대한 많은 논문이 발표되었습니다.

데이터 측정항목

AUROC 점수는 ROC 곡선을 여러 임계값을 동시에 처리할 때 모델의 성능을 설명하는 숫자로 요약합니다. AUROC 점수 1은 만점을 나타내고, AUROC 점수 0.5는 무작위 추측에 해당한다는 점은 주목할 가치가 있습니다.

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 4: ROC 곡선의 도식적 표현

사용된 방법 - 교차 엔트로피 손실 함수

교차 엔트로피는 일반적으로 기계 학습에서 손실 함수로 사용됩니다. 교차 엔트로피는 엔트로피의 정의를 기반으로 하는 정보 이론 분야의 척도이며 일반적으로 두 확률 분포 간의 차이를 계산하는 데 사용되는 반면, 교차 엔트로피는 두 분포 간의 총 엔트로피를 계산하는 것으로 생각할 수 있습니다.

교차 엔트로피는 로그 손실이라고 하는 로지스틱 손실과도 관련이 있습니다. 이 두 가지 측정값은 서로 다른 소스에서 나왔지만 분류 모델의 손실 함수로 사용되는 경우 두 방법 모두 동일한 수량을 계산하며 서로 바꿔서 사용할 수 있습니다.

(구체적인 내용은 https://machinelearningmastery.com/logistic-regression-with-maximum-likelihood-estimation/을 참조하세요.)

교차 엔트로피란 무엇인가요?

교차 엔트로피는 주어진 무작위 변수 또는 일련의 사건에 대한 두 확률 분포 간의 차이를 측정한 것입니다. 정보는 이벤트를 인코딩하고 전송하는 데 필요한 비트 수를 수량화한다는 것을 기억하실 것입니다. 가능성이 낮은 이벤트에는 더 많은 정보가 포함되는 경향이 있는 반면, 확률이 높은 이벤트에는 더 적은 정보가 포함되는 경향이 있습니다.

정보 이론에서는 사건의 "놀라움"을 설명하는 것을 좋아합니다. 이벤트가 발생할 가능성이 낮을수록 더 놀라운 일이 됩니다. 즉, 더 많은 정보가 포함되어 있음을 의미합니다.

  • 낮은 확률 이벤트(놀라움): 추가 정보.
  • 높은 확률의 이벤트(놀랍지 않음): 정보가 적습니다.

사건 P(x)의 확률이 주어지면 정보 h(x)는 사건 x에 대해 다음과 같이 계산될 수 있습니다.

h(x) = -log(P(x))
로그인 후 복사

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 4: 완벽한 그림( 이미지 출처: Vlastimil Martinek)

엔트로피는 확률 분포에서 무작위로 선택된 이벤트를 전송하는 데 필요한 비트 수입니다. 치우친 분포는 낮은 엔트로피를 갖는 반면, 동일한 사건 확률을 갖는 분포는 일반적으로 더 높은 엔트로피를 갖습니다.

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 5: 예측 확률에 대한 목표 비율의 완벽한 그림(이미지 출처: Vlastimil Martinek)

비뚤어진 확률 분포는 "놀라움"이 적고 결과적으로 엔트로피가 더 낮습니다. 이벤트가 지배적입니다. 상대적으로 말하면, 평형 분포는 사건이 발생할 확률이 동일하기 때문에 더 놀랍고 더 높은 엔트로피를 갖습니다.

  • 치우친 확률 분포(당연하지 않음): 낮은 엔트로피.
  • 균형 확률 분포 (놀랍게도): 높은 엔트로피.

엔트로피 H(x)는 아래 그림과 같이 x 이산 상태의 x 집합과 해당 확률 P(x)가 있는 확률 변수에 대해 계산할 수 있습니다.

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 6: 다단계 교차 엔트로피 공식(이미지 출처: Vlastimil Martinek)

다중 범주 분류 - 다중 범주 교차 엔트로피를 사용합니다. 교차 엔트로피의 특정 응용 사례입니다. 원-핫 인코딩 벡터 방식이 사용됩니다. (관심 있는 독자는 Vlastimil Martinek의 기사를 참조할 수 있음)

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 7: 팬더와 고양이 손실 계산의 완벽한 분해 다이어그램 (그림 출처: Vlastimil Martinek)

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 8: 손실 가치 그림 9 : 손실 가치의 완벽한 분해 그림 2 (이미지 출처: Vlastimil Martinek) 그림 9: 확률과 손실 정보 (이미지 출처: Vlastimil Martinek)의 시각적 표현

이진 교차 엔트로피는 어떻습니까? 망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 10: 분류 교차 엔트로피 공식 그림(이미지 출처: Vlastimil Martinek)

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

우리 프로젝트에서는 이진 분류(이진 교차 엔트로피 체계)를 사용하기로 선택했습니다. 즉, 대상은 0 또는 1 교차 엔트로피 방식. 목표를 각각 [0,1] 또는 [1,0]의 핫 인코딩 벡터로 변환하고 예측하면 교차 엔트로피 공식을 사용하여 계산할 수 있습니다.

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘그림 11: 이진 교차 엔트로피 계산 공식 그림(이미지 출처: Vlastimil Martinek)

비대칭 손실 알고리즘을 사용하여 불균형 데이터 처리

일반적인 다중 레이블 모델 환경에서 데이터 세트의 특징에는 양수 레이블과 음수 레이블의 수가 불균형할 수 있습니다. 이 시점에서 부정적인 레이블을 선호하는 데이터 세트의 경향은 최적화 프로세스에 지배적인 영향을 미치고 궁극적으로 긍정적인 레이블의 기울기가 과소 강조되어 예측 결과의 정확도가 감소합니다.

이것이 바로 제가 현재 선택한 데이터 세트가 직면한 상황입니다. 망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

이 프로젝트는 BenBaruch et al.이 개발한 비대칭 손실 알고리즘을 사용합니다(그림 12 참조). 이는 다중 레이블 분류를 해결하는 방법이지만 카테고리에도 심각한 불균형 분포 상황이 있습니다.

제가 생각해낸 방식은 크로스 엔트로피의 양수 성분과 음수 성분을 비대칭적으로 수정하여 음수 라벨 부분의 가중치를 줄이고, 최종적으로 처리하기 더 어려운 양수 라벨 부분의 가중치를 강조하는 것입니다. .

그림 12: 비대칭 다중 레이블 분류 알고리즘(2020, 저자: Ben-Baruch et al.)

테스트할 아키텍처

요약하자면, 이 프로젝트는 다음에 표시된 것을 사용합니다. 그림 아키텍처:

망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘

그림 13(이미지 출처: Sixu)

위 아키텍처에 사용되는 주요 알고리즘은 주로 다음과 같습니다. VGG16

  • 또한, 위의 관련 알고리즘은 본 글의 캡스톤 프로젝트가 완료되면 내용이 업데이트 될 예정입니다! 관심 있는 독자분들은 계속 지켜봐 주시기 바랍니다!
  • 번역가 소개
  • Zhu Xianzhong, 51CTO 커뮤니티 편집자, 51CTO 전문 블로거, 강사, 웨이팡 대학의 컴퓨터 교사이자 프리랜스 프로그래밍 업계의 베테랑입니다.
  • 원제:
  • Deep Ensemble Learning for Retinal Image Classification(CNN)

, 저자: Cathy Kam

위 내용은 망막 이미지 분류를 위한 심층 앙상블 학습 알고리즘의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python에서 BERT를 사용한 감정 분석 방법 및 단계 Python에서 BERT를 사용한 감정 분석 방법 및 단계 Jan 22, 2024 pm 04:24 PM

BERT는 Google이 2018년에 제안한 사전 훈련된 딥러닝 언어 모델입니다. 전체 이름은 BidirectionEncoderRepresentationsfromTransformers이며 Transformer 아키텍처를 기반으로 하며 양방향 인코딩의 특성을 가지고 있습니다. 기존 단방향 코딩 모델과 비교하여 BERT는 텍스트를 처리할 때 상황 정보를 동시에 고려할 수 있으므로 자연어 처리 작업에서 잘 수행됩니다. 양방향성을 통해 BERT는 문장의 의미 관계를 더 잘 이해할 수 있어 모델의 표현 능력이 향상됩니다. 사전 훈련 및 미세 조정 방법을 통해 BERT는 감정 분석, 이름 지정 등 다양한 자연어 처리 작업에 사용될 수 있습니다.

일반적으로 사용되는 AI 활성화 함수 분석: Sigmoid, Tanh, ReLU 및 Softmax의 딥러닝 실습 일반적으로 사용되는 AI 활성화 함수 분석: Sigmoid, Tanh, ReLU 및 Softmax의 딥러닝 실습 Dec 28, 2023 pm 11:35 PM

활성화 기능은 딥 러닝에서 중요한 역할을 하며 신경망에 비선형 특성을 도입하여 네트워크가 복잡한 입력-출력 관계를 더 잘 학습하고 시뮬레이션할 수 있도록 합니다. 활성화 함수의 올바른 선택과 사용은 신경망의 성능과 훈련 결과에 중요한 영향을 미칩니다. 이 기사에서는 일반적으로 사용되는 네 가지 활성화 함수인 Sigmoid, Tanh, ReLU 및 Softmax를 소개부터 시작하여 사용 시나리오, 장점, 단점과 최적화 솔루션은 활성화 기능에 대한 포괄적인 이해를 제공하기 위해 논의됩니다. 1. 시그모이드 함수 시그모이드 함수 공식 소개: 시그모이드 함수는 실수를 0과 1 사이에 매핑할 수 있는 일반적으로 사용되는 비선형 함수입니다. 통일하기 위해 자주 사용됩니다.

ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. May 30, 2024 am 09:35 AM

이전에 작성했던 오늘은 딥 러닝 기술이 복잡한 환경에서 비전 기반 SLAM(동시 위치 파악 및 매핑)의 성능을 향상할 수 있는 방법에 대해 논의합니다. 심층 특징 추출과 깊이 일치 방법을 결합하여 저조도 조건, 동적 조명, 질감이 약한 영역 및 심한 지터와 같은 까다로운 시나리오에서 적응을 향상하도록 설계된 다목적 하이브리드 시각적 SLAM 시스템을 소개합니다. 우리 시스템은 확장 단안, 스테레오, 단안 관성 및 스테레오 관성 구성을 포함한 여러 모드를 지원합니다. 또한 시각적 SLAM을 딥러닝 방법과 결합하여 다른 연구에 영감을 주는 방법도 분석합니다. 공개 데이터 세트 및 자체 샘플링 데이터에 대한 광범위한 실험을 통해 위치 정확도 및 추적 견고성 측면에서 SL-SLAM의 우수성을 입증합니다.

잠재 공간 임베딩: 설명 및 시연 잠재 공간 임베딩: 설명 및 시연 Jan 22, 2024 pm 05:30 PM

잠재 공간 임베딩(LatentSpaceEmbedding)은 고차원 데이터를 저차원 공간에 매핑하는 프로세스입니다. 기계 학습 및 딥 러닝 분야에서 잠재 공간 임베딩은 일반적으로 고차원 입력 데이터를 저차원 벡터 표현 세트로 매핑하는 신경망 모델입니다. 이 벡터 세트를 "잠재 벡터" 또는 "잠재 벡터"라고 합니다. 인코딩". 잠재 공간 임베딩의 목적은 데이터의 중요한 특징을 포착하고 이를 보다 간결하고 이해하기 쉬운 형식으로 표현하는 것입니다. 잠재 공간 임베딩을 통해 저차원 공간에서 데이터를 시각화, 분류, 클러스터링하는 등의 작업을 수행하여 데이터를 더 잘 이해하고 활용할 수 있습니다. 잠재 공간 임베딩은 이미지 생성, 특징 추출, 차원 축소 등과 같은 다양한 분야에서 폭넓게 응용됩니다. 잠재공간 임베딩이 핵심

하나의 기사로 이해하기: AI, 머신러닝, 딥러닝 간의 연결과 차이점 하나의 기사로 이해하기: AI, 머신러닝, 딥러닝 간의 연결과 차이점 Mar 02, 2024 am 11:19 AM

오늘날 급속한 기술 변화의 물결 속에서 인공지능(AI), 머신러닝(ML), 딥러닝(DL)은 정보기술의 새로운 물결을 이끄는 밝은 별과도 같습니다. 이 세 단어는 다양한 최첨단 토론과 실제 적용에 자주 등장하지만, 이 분야를 처음 접하는 많은 탐험가들에게는 그 구체적인 의미와 내부 연관성이 여전히 수수께끼에 싸여 있을 수 있습니다. 그럼 먼저 이 사진을 보시죠. 딥러닝, 머신러닝, 인공지능 사이에는 밀접한 상관관계와 진보적인 관계가 있음을 알 수 있습니다. 딥러닝은 머신러닝의 특정 분야이며, 머신러닝은

매우 강하다! 딥러닝 알고리즘 상위 10개! 매우 강하다! 딥러닝 알고리즘 상위 10개! Mar 15, 2024 pm 03:46 PM

2006년 딥러닝이라는 개념이 제안된 지 거의 20년이 지났습니다. 딥러닝은 인공지능 분야의 혁명으로 많은 영향력 있는 알고리즘을 탄생시켰습니다. 그렇다면 딥러닝을 위한 상위 10가지 알고리즘은 무엇이라고 생각하시나요? 다음은 제가 생각하는 딥 러닝을 위한 최고의 알고리즘입니다. 이들은 모두 혁신, 애플리케이션 가치 및 영향력 측면에서 중요한 위치를 차지하고 있습니다. 1. 심층 신경망(DNN) 배경: 다층 퍼셉트론이라고도 불리는 심층 신경망(DNN)은 가장 일반적인 딥 러닝 알고리즘으로 처음 발명되었을 때 최근까지 컴퓨팅 성능 병목 현상으로 인해 의문을 제기했습니다. 20년, 컴퓨팅 파워, 데이터의 폭발적인 증가로 돌파구가 찾아왔습니다. DNN은 여러 개의 숨겨진 레이어를 포함하는 신경망 모델입니다. 이 모델에서 각 레이어는 입력을 다음 레이어로 전달하고

기초부터 실습까지 Elasticsearch 벡터 검색의 개발 이력을 검토해보세요. 기초부터 실습까지 Elasticsearch 벡터 검색의 개발 이력을 검토해보세요. Oct 23, 2023 pm 05:17 PM

1. 소개 벡터 검색은 현대 검색 및 추천 시스템의 핵심 구성 요소가 되었습니다. 복잡한 객체(예: 텍스트, 이미지, 사운드)를 수치 벡터로 변환하고 다차원 공간에서 유사성 검색을 수행하여 효율적인 쿼리 매칭 및 추천을 가능하게 합니다. 기초부터 실습까지 Elasticsearch의 개발 이력을 살펴보세요. 벡터 검색_elasticsearch 유명한 오픈 소스 검색 엔진으로서 Elasticsearch의 벡터 검색 분야 개발은 항상 많은 관심을 받아왔습니다. 본 글에서는 각 단계의 특징과 진행 상황을 중심으로 Elasticsearch 벡터 검색의 개발 역사를 검토해 보겠습니다. 기록을 가이드로 삼아 모든 사람이 전체 범위의 Elasticsearch 벡터 검색을 설정하는 것이 편리합니다.

단백질과 모든 살아있는 분자의 상호 작용과 구조를 이전보다 훨씬 더 정확하게 예측하는 AlphaFold 3 출시 단백질과 모든 살아있는 분자의 상호 작용과 구조를 이전보다 훨씬 더 정확하게 예측하는 AlphaFold 3 출시 Jul 16, 2024 am 12:08 AM

Editor | Radish Skin 2021년 강력한 AlphaFold2가 출시된 이후 과학자들은 단백질 구조 예측 모델을 사용하여 세포 내 다양한 ​​단백질 구조를 매핑하고 약물을 발견하며 알려진 모든 단백질 상호 작용에 대한 "우주 지도"를 그려 왔습니다. 방금 Google DeepMind는 단백질, 핵산, 소분자, 이온 및 변형된 잔기를 포함한 복합체에 대한 결합 구조 예측을 수행할 수 있는 AlphaFold3 모델을 출시했습니다. AlphaFold3의 정확도는 과거의 많은 전용 도구(단백질-리간드 상호작용, 단백질-핵산 상호작용, 항체-항원 예측)에 비해 크게 향상되었습니다. 이는 단일 통합 딥러닝 프레임워크 내에서 다음을 달성할 수 있음을 보여줍니다.

See all articles