한 글로 인공지능 테이블 이해하기: MindsDB로 시작하기
이 글은 위챗 공개 계정 '정보화 시대에 살기'에서 재인쇄되었습니다. 이 기사를 재인쇄하려면 Living in the Information Age 공개 계정에 문의하세요.
데이터베이스 작업에 익숙한 학생들에게는 아름다운 SQL 문을 작성하고 데이터베이스에서 필요한 데이터를 찾는 방법을 찾는 것이 일상적인 작업입니다.
머신러닝에 익숙한 학생들에게는 데이터를 얻고, 데이터를 전처리하고, 모델을 구축하고, 훈련 세트와 테스트 세트를 결정하고, 훈련된 모델을 사용하여 일련의 예측을 하는 것도 일상적인 작업입니다. 미래. .
그럼 두 기술을 결합할 수 있을까요? 데이터는 데이터베이스에 저장되어 있으며 예측은 과거 데이터를 기반으로 해야 한다는 것을 알 수 있습니다. 데이터베이스에 존재하는 데이터를 통해 미래의 데이터를 쿼리한다면 과연 가능할까요?
이 아이디어를 바탕으로 MindsDB가 탄생했습니다.
MindsDB는 기존 SQL 데이터베이스에 기계 학습을 적용하여 데이터와 모델을 연결하는 도구입니다. 인공지능 테이블(AI-Tables)을 통해 머신러닝 모델을 데이터베이스 내 가상 테이블에 통합해 간단한 SQL문을 사용해 예측을 생성하고 쿼리를 수행할 수 있다. 시계열, 회귀 및 분류 예측은 거의 즉시 데이터베이스에서 직접 수행할 수 있습니다.
정보 기술의 발달로 많은 산업계에서는 과거 데이터 분석을 기반으로 한 '무슨 일이 일어났고 왜 발생했는지'에서 머신러닝 예측 모델을 기반으로 한 '무슨 일이 일어날지 예측하고 어떻게 발생하는지'로 천천히 변화하고 있습니다. MindsDB는 이러한 목표를 달성하기 위한 도구입니다.
MindsDB는 데이터베이스에서 직접 모델링을 수행하여 데이터 처리, 기계 학습 모델 구축 및 기타 단계의 골치 아픈 작업을 제거할 수 있습니다. 데이터 분석가와 비즈니스 분석가는 즉시 사용하기 위해 데이터 엔지니어링이나 모델링에 대해 너무 많이 알 필요가 없습니다.
그러면 MindsDB가 이러한 작업을 어떻게 구현하는지 살펴보겠습니다.
예를 들어, 도시의 주택 가격과 GDP에 대한 데이터를 저장하는 데이터 테이블이 있고 주택 가격과 GDP를 쿼리하려고 합니다. 다음과 유사한 SQL을 사용하여 쿼리할 수 있습니다.
select gdp, houseprice from city;
그러면 GDP와 주택 가격이 선형 관계를 가질 수 있음을 알 수 있습니다. 특정 GDP 값에 해당하는 주택 가격을 쿼리하려면
select gdp, houseprice from city where gdp=10000;
라고 쓰면 되는데, 쿼리한 GDP 데이터가 데이터베이스에 없으면 당연히 쿼리 결과를 얻을 수 없겠죠?
이때, 인공지능 테이블이 나타납니다.
먼저 주택 가격 예측 모델을 생성할 수 있습니다:
create predictor mindsdb.price_model from city predict houseprice;
이런 식으로 MindsDB는 백그라운드에서 자동으로 모델을 생성합니다. 이때 이 모델을 이용하면 데이터베이스에 없는 GDP 데이터에 해당하는 주택가격 예측값을 쿼리할 수 있다.
gpd=20000;
minddb.price_model에서 주택 가격을 선택하세요. 이러한 방식으로 과거 데이터를 기반으로 모델 예측 값을 얻을 수 있습니다.
위 내용은 한 글로 인공지능 테이블 이해하기: MindsDB로 시작하기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

70B 모델에서는 1000개의 토큰을 몇 초 만에 생성할 수 있으며 이는 거의 4000자로 변환됩니다! 연구진은 Llama3를 미세 조정하고 가속 알고리즘을 도입하여 기본 버전과 비교하여 속도가 13배 빨라졌습니다. 속도가 빠를 뿐만 아니라 코드 재작성 작업 성능도 GPT-4o를 능가합니다. 이 성과는 인기 있는 AI 프로그래밍 아티팩트인 Cursor를 개발한 팀과 OpenAI도 투자에 참여한 anysphere에서 이루어졌습니다. 빠른 추론 가속 프레임워크로 잘 알려진 Groq에서는 70BLlama3의 추론 속도가 초당 300개 토큰이 조금 넘는다는 사실을 아셔야 합니다. Cursor의 속도 덕분에 거의 즉각적인 완전한 코드 파일 편집이 가능하다고 할 수 있습니다. 어떤 사람들은 좋은 사람이라고 커스를 넣으면
