Python에서 Lambda 함수 사용에 대한 간략한 설명
오늘 저는 매우 사용하기 쉬운 Python 내장 함수인 람다 방식을 추천하고 싶습니다. 이 튜토리얼에서는 대략적으로 다음과 같은 내용을 공유하겠습니다.
- 람다 함수란 무엇입니까
- lambda 함수? 필터 목록 요소
- lambda 함수와 map() 메서드의 조합
- 람다 함수와 apply() 메서드의 조합
- 람다 메서드를 사용하기에 적합하지 않은 경우
Lambda 함수란 무엇입니까
파이썬에서 우리는 익명 함수를 선언하기 위해 종종 람다 키워드를 사용합니다. 소위 익명 함수는 일반인의 관점에서 이름이 없는 함수입니다. 구체적인 구문 형식은 다음과 같습니다.
lambda arguments : expression
매개변수 수에는 제한이 없습니다. 하나의 표현식을 허용하며, 표현식의 결과는 함수의 반환 값입니다. 간단히 예를 작성하면 됩니다.
(lambda x:x**2)(5)
output:
25
Filter the elements in the list
그러면 어떻게 목록의 요소를 필터링합니까? 목록? 여기서는 람다 함수와 filter() 메서드, 그리고 filter() 메서드의 구문 형식을 결합해야 합니다.
filter(function, iterable)
- function -- 판단 함수
- iterable -- 반복 가능한 개체, 목록 또는 사전
중에서
import numpy as np yourlist = list(np.arange(2,50,3))
그 중에서 2의 거듭제곱보다 100보다 작은 요소를 필터링하려고 합니다. 다음과 같이 익명 함수를 정의해 보겠습니다.
lambda x:x**2<100
최종 결과는 다음과 같습니다. :
list(filter(lambda x:x**2<100, yourlist))
output:
[2, 5, 8]
복잡한 계산 과정을 접한다면 여기 편집자는 함수를 직접 맞춤 설정하는 것을 권장하지만, 단순한 계산 과정이라면 람다 익명 함수가 확실히 최선의 선택입니다.
map() 함수와 함께 사용
map() 함수의 구문은 다음 익명 함수와 같이 위의 filter() 함수와 유사합니다.
lambda x: x**2+x**3
map() 메서드와 함께 사용합니다.
list(map(lambda x: x**2+x**3, yourlist))
출력:
[12, 150, 576, 1452, 2940, 5202, ......]
물론 앞서 언급했듯이 람다 익명 함수는 여러 개의 매개변수를 허용할 수 있습니다. 예를 들어 두 개의 목록 세트가 있습니다.
mylist = list(np.arange(4,52,3)) yourlist = list(np.arange(2,50,3))
map() 메소드 작업, 코드는 다음과 같습니다:
list(map(lambda x,y: x**2+y**2, yourlist,mylist))
출력:
[20, 74, 164, 290, 452, 650, 884, 1154, ......]
및 apply() 메소드의 조합
apply() 메소드는 Pandas 데이터 테이블에서 더 많이 사용되며 적용 시 람다 익명성이 적용됩니다. () 메소드 함수를 사용하여 아래와 같이 새 데이터 테이블을 생성합니다.
myseries = pd.Series(mylist) myseries
output:
04 17 2 10 3 13 4 16 5 19 6 22 7 25 8 28 ...... dtype: int32
apply() 메소드의 사용은 map() 메소드와 필터 모두에서 약간 다릅니다. () 메서드를 사용하려면 반복 가능한 개체를 변환해야 하며 여기에서는 Apply()가 필요하지 않습니다.
myseries.apply(lambda x: (x+5)/x**2)
output:
0 0.562500 1 0.244898 2 0.150000 3 0.106509 4 0.082031 5 0.066482 6 0.055785 7 0.048000 ...... dtype: float64
그리고 DataFarme 테이블 데이터를 만나면 동일한 작업이 수행됩니다
df = pd.read_csv(r'Dummy_Sales_Data_v1.csv') df["Sales_Manager"] = df["Sales_Manager"].apply(lambda x: x.upper()) df["Sales_Manager"].head()
output:
0PABLO 1PABLO 2KRISTEN 3ABDUL 4 STELLA Name: Sales_Manager, dtype: object
그리고 apply() 메소드를 통해 str.upper() 메소드를 직접 사용하는 것보다 처리가 더 빠릅니다! !
사용하기에 적합하지 않은 시나리오
그럼 사용하기에 적합하지 않은 시나리오는 무엇일까요? 따라서 우선 람다 함수는 익명 함수이므로 변수에 할당하는 데 적합하지 않습니다. 예를 들어 다음과 같은 경우에는
squared_sum = lambda x,y: x**2 + y**2 squared_sum(3,4)
비교하면 처리를 위해 함수를 사용자 정의하는 것이 좋습니다.
def squared_sum(x,y): return x**2 + y**2 squared_sum(3,4)
출력:
25
다음 상황에 직면하면 코드를 약간 단순화할 수 있습니다:
import math mylist = [10, 25, 40, 49, 65, 81] sqrt_list = list(map(lambda x: math.sqrt(x), mylist)) sqrt_list
output:
[3.16227766, 5.0, 6.324555320, 7.0, 8.062257748, 9.0]
다음과 같이 단순화할 수 있습니다:
import math mylist = [10, 25, 40, 49, 65, 81] sqrt_list = list(map(math.sqrt, mylist)) sqrt_list
output:
[3.162277, 5.0, 6.324555, 7.0, 8.062257, 9.0]
에 내장 함수인 경우 Python은 특히 수학 등 산술에 사용되는 모듈입니다. 람다 함수에 넣을 필요 없이 직접 추출하여 사용할 수 있습니다
위 내용은 Python에서 Lambda 함수 사용에 대한 간략한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

데이터 전문가는 다양한 소스에서 많은 양의 데이터를 처리해야합니다. 이것은 데이터 관리 및 분석에 어려움을 겪을 수 있습니다. 다행히도 AWS Glue와 Amazon Athena의 두 가지 AWS 서비스가 도움이 될 수 있습니다.

Redis 서버를 시작하는 단계에는 다음이 포함됩니다. 운영 체제에 따라 Redis 설치. Redis-Server (Linux/MacOS) 또는 Redis-Server.exe (Windows)를 통해 Redis 서비스를 시작하십시오. Redis-Cli Ping (Linux/MacOS) 또는 Redis-Cli.exe Ping (Windows) 명령을 사용하여 서비스 상태를 확인하십시오. Redis-Cli, Python 또는 Node.js와 같은 Redis 클라이언트를 사용하여 서버에 액세스하십시오.

Redis의 대기열을 읽으려면 대기열 이름을 얻고 LPOP 명령을 사용하여 요소를 읽고 빈 큐를 처리해야합니다. 특정 단계는 다음과 같습니다. 대기열 이름 가져 오기 : "큐 :"와 같은 "대기열 : my-queue"의 접두사로 이름을 지정하십시오. LPOP 명령을 사용하십시오. 빈 대기열 처리 : 대기열이 비어 있으면 LPOP이 NIL을 반환하고 요소를 읽기 전에 대기열이 존재하는지 확인할 수 있습니다.

질문 : Redis 서버 버전을 보는 방법은 무엇입니까? 명령 줄 도구 Redis-Cli를 사용하여 연결된 서버의 버전을보십시오. 정보 서버 명령을 사용하여 서버의 내부 버전을보고 정보를 구문 분석하고 반환해야합니다. 클러스터 환경에서 각 노드의 버전 일관성을 확인하고 스크립트를 사용하여 자동으로 확인할 수 있습니다. 스크립트를 사용하여 Python 스크립트와 연결 및 인쇄 버전 정보와 같은보기 버전을 자동화하십시오.

Navicat의 비밀번호 보안은 대칭 암호화, 암호 강도 및 보안 측정의 조합에 의존합니다. 특정 측정에는 다음이 포함됩니다. SSL 연결 사용 (데이터베이스 서버가 인증서를 지원하고 올바르게 구성하는 경우), 정기적으로 Navicat을 업데이트하고보다 안전한 방법 (예 : SSH 터널), 액세스 권한 제한 및 가장 중요한 것은 암호를 기록하지 않습니다.
