PaLM을 넘어! 북경대학교 석사가 DiVeRSe를 제안하여 NLP 추론 순위를 완전히 갱신했습니다.
대규모 언어 모델은 1,750억 개의 매개변수를 갖춘 GPT-3, 5,400억 개의 매개변수를 갖춘 PaLM 등 현대 자연어 처리 기술의 초석이라고 할 수 있습니다. 다운스트림 작업.
하지만 추론 작업은 여전히 어려운 문제이며, 특히 정답을 얻기 위해 다단계 추론이 필요한 질문에는 더욱 그렇습니다.
최근 연구자들은 적절하게 설계된 프롬프트가 모델이 다단계 추론을 수행하여 최종 답변을 생성하도록 안내할 수 있는 한 이 방법을 사고 연쇄 추론이라고도 한다는 사실을 발견했습니다.
사고 체인 기술은 산술 벤치마크 GSM8K에서 정확도를 17.9%에서 58.1%로 높였으며 나중에 도입된 자체 일관성 메커니즘은 정확도를 74.4%로 더욱 높였습니다
예를 들어 복잡한 추론 작업 일반적으로 정답으로 이어질 수 있는 추론 경로가 여러 개 있습니다. 자기 일관성 있는 방법은 사고 체인을 통해 언어 모델에서 다양한 추론 경로 집합을 샘플링한 다음 그 중에서 가장 일관성 있는 답변을 반환합니다.
최근 북경 대학교와 Microsoft의 연구원들은 세 가지 주요 혁신을 포함하고 모델의 추론 기능을 더욱 향상시키는 새로운 자기 일관성 있는 방법인 DiVeRSe를 기반으로 합니다.
페이퍼 링크: https://arxiv.org/abs/2206.02336
코드 링크: https://github.com/microsoft/DiVeRSe
먼저, 자기 일관성 있는 접근 방식의 영향을 받은 "다른 아이디어, 동일한 답변 "언어 모델의 다양한 추론 경로 샘플링에서 영감을 받은 DiVerSe는 다양성 측면에서 한 단계 더 나아갑니다. "모든 길은 로마로 통한다"라는 개념에 따라 여러 프롬프트를 사용하여 답변을 생성하며, 이는 더욱 완전한 답변을 생성할 수 있습니다. 그리고 보완적인 답변.
연구원들은 먼저 각 질문에 대해 5개의 서로 다른 프롬프트를 제공한 다음 각 프롬프트에 대해 20개의 추론 경로를 샘플링하고 마지막으로 각 질문에 대해 100개의 답변 추론 경로를 생성합니다.
핵심 질문은 다양한 프롬프트를 얻는 방법입니다. 샘플 라이브러리를 얻은 후 K개의 샘플을 샘플링하여 프롬프트를 구성하고 이를 5번 반복합니다.
샘플이 충분하지 않으면 self를 사용하세요. -즉각적 다양성을 향상시키기 위한 교수법, 즉 표본의 일부로부터 의사 추론 경로와 쌍을 생성합니다.
둘째, 추론 경로를 생성할 때 언어 모델에는 이전 단계의 오류를 수정하는 메커니즘이 없어 최종 예측 결과에 혼란이 발생할 수 있습니다. DiVeRSe는 투표 메커니즘을 안내하기 위해 각 추론 경로의 정확성을 검증하기 위해 검증자의 아이디어를 활용합니다. 즉, 모든 추론 메커니즘이 똑같이 중요하거나 좋은 것은 아닙니다.
질문에 대한 100개의 추론 경로가 있고 그 중 60개는 "답은 110"이고 그 중 40개는 "답은 150"이라고 가정합니다. 검증인(즉, 원래의 자기 일관성 있는 방법)이 없으면 "답은 110입니다"가 다수결이므로 110을 최종 답변으로 처리하고 150이 되는 40개의 추론 경로를 삭제할 수 있습니다.
verifier는 추론 경로에 점수를 매깁니다. 입력은 질문 x, 경로 z 및 답변 y이며, 출력은 양성 확률입니다.
검증기를 사용하여 "정답은 110"의 60개 추론 경로의 평균 점수가 0.3이라고 가정하고, "정답은 150"의 40개 추론 경로의 평균 점수는 0.8이라고 가정합니다. 그러면 최종 답은 150이 되어야 하는데, 40*0.8>60*0.3
셋째, 답은 여러 단계의 추론을 바탕으로 생성되기 때문에 경로가 정답을 생성하면 모든 단계를 고려하여 최종 정확성에 기여한다. . 그러나 오답이 발생했다고 해서 모든 단계가 틀렸거나 오류에 기여했다는 의미는 아닙니다.
즉, 결과가 틀려도 일부 중간 단계는 여전히 정확할 수 있지만 이후의 일부 편차 단계는 최종 오답으로 이어집니다. DiVeRSe는 각 단계에 세밀한 라벨을 할당하는 메커니즘을 설계하고 단계 인식 검증기를 제안했으며, 단순히 최종 답변을 보는 대신 각 단계의 추론에 정확성을 할당했습니다.
본체는 여전히 2분류자이지만, 핵심 질문은 단계 수준 부정 라벨을 어떻게 얻을 것인가입니다. 왜냐하면 최종 답변이 틀리면 사람의 참여 없이는 어떤 단계가 잘못되었는지 알 수 없기 때문입니다. 정답과 과정이 모두 정확해야 합니다.
연구원들은 지원 개념을 제안했습니다. 예를 들어 산술 작업에서는 중간 단계의 결과와 동일한 다른 예의 중간 결과가 있어야 합니다.
이 세 가지 개선 사항을 바탕으로 연구원들은 5개의 산술 추론 데이터 세트에 대한 실험을 수행했으며, code-davinci-002를 기반으로 한 DiVeRSe 방법이 평균 개선율로 새로운 SOTA 알고리즘을 달성했음을 알 수 있습니다. 6.2%
두 가지 상식 추론 과제에서 DiVeRSe의 성능이 PaLM 기반 자기 일관성(-2.2%)보다 약간 낮았습니다. 그 이유는 상식 추론 과제 때문일 것으로 추측됩니다. 개방형 작업이 아닌 객관식 작업입니다. 생성 작업으로 인해 더 많은 거짓양성 사례가 발생했습니다.
귀납적 추론 작업에서 DiVeRSe는 CLUTRR 작업에서 95.9%의 점수를 달성하여 이전 SOTA 미세 조정 결과(+28.9%)를 능가했습니다.
절제 실험에서는 투표 검증 메커니즘이 개선된 것을 확인할 수 있습니다. 성능이 더 분명해졌습니다.
대부분의 실험에서 투표 검증기를 단계 인식 버전으로 확장하면 성능이 향상될 수 있습니다. GSM8K의 code-davinci-002의 경우 단계 인식 버전의 검증기는 성능이 약간 저하됩니다.
가능한 이유는 code-davinci-002가 더 강력하고 GSM8K에 대해 더 높은 품질의 추론 경로를 생성할 수 있으므로 단계 수준 정보의 필요성이 줄어들기 때문입니다. 즉, text-davinci는 짧거나 불완전한 추론 경로를 생성할 가능성이 더 높지만 code-davinci는 점점 늘어나는 콘텐츠를 생성하는 데 더 친숙합니다.
논문의 첫 번째 저자는 Yifei Li입니다. 그는 2020년에 Northeastern University에서 소프트웨어 공학 학사 학위를 취득했습니다. 그는 현재 Peking University에서 석사 학위를 취득하고 있습니다. 그의 주요 연구 방향은 자연어 처리입니다. , 특히 대규모 언어 모델에서 프롬프트가 표시됩니다. -조정 및 추론.
기사의 두 번째 저자는 Microsoft Research Asia의 DKI 연구원인 Zeqi Lin입니다. 그는 2014년과 2019년에 북경대학교에서 학사 학위와 박사 학위를 받았습니다. 그의 주요 연구 방향은 기계 학습과 소프트웨어 분석에의 응용입니다. 및 데이터 분석.
위 내용은 PaLM을 넘어! 북경대학교 석사가 DiVeRSe를 제안하여 NLP 추론 순위를 완전히 갱신했습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

01 전망 요약 현재로서는 탐지 효율성과 탐지 결과 간의 적절한 균형을 이루기가 어렵습니다. 우리는 광학 원격 탐사 이미지에서 표적 감지 네트워크의 효과를 향상시키기 위해 다층 특징 피라미드, 다중 감지 헤드 전략 및 하이브리드 주의 모듈을 사용하여 고해상도 광학 원격 감지 이미지에서 표적 감지를 위한 향상된 YOLOv5 알고리즘을 개발했습니다. SIMD 데이터 세트에 따르면 새로운 알고리즘의 mAP는 YOLOv5보다 2.2%, YOLOX보다 8.48% 우수하여 탐지 결과와 속도 간의 균형이 더 잘 이루어졌습니다. 02 배경 및 동기 원격탐사 기술의 급속한 발전으로 항공기, 자동차, 건물 등 지구 표면의 많은 물체를 묘사하기 위해 고해상도 광학 원격탐사 영상이 활용되고 있다. 원격탐사 이미지 해석에서 물체 감지

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다
