Sun Yat-sen University HCP 연구실의 새로운 혁신: 인과 패러다임을 사용하여 다중 모드 대형 모델 업그레이드
쑨원대학교 인간-기계 지능 융합 연구소(HCP)는 AIGC 및 다중 모드 대형 모델에서 유익한 성과를 거두었으며 최근 AAAI 2023 및 CVPR 2023에서 10개 이상의 논문에 선정되었습니다. 글로벌 연구 기관의 첫 번째 계층입니다.
작업 중 하나는 인과 모델을 사용하여 튜닝 시 다중 모달 대형 모델의 제어 가능성과 일반화를 크게 개선한 것입니다. "마스크된 이미지는 강력한 미세 조정을 위한 반사실 샘플입니다."
링크: https://arxiv.org/abs/2303.03052
사전 훈련된 대규모 모델을 사용하여 다운스트림 작업을 미세 조정하는 것은 현재 인기 있는 딥 러닝 패러다임입니다. . 특히, 최근 사전 학습된 대규모 언어 모델인 ChatGPT의 뛰어난 성능으로 인해 이러한 기술 패러다임이 널리 인식되었습니다. 대규모 데이터로 사전 학습한 후 이러한 대규모 사전 학습 모델은 실제 환경에서 변화하는 데이터 분포에 적응할 수 있으므로 일반 시나리오에서 강력한 견고성을 보여줍니다.
그러나 미리 훈련된 대형 모델이 다운스트림 장면 데이터로 미세 조정되어 특정 애플리케이션 작업에 적응할 때 대부분의 경우 이러한 데이터는 특이합니다. 이러한 데이터를 사용하여 사전 훈련된 대형 모델을 미세 조정하면 모델의 견고성이 저하되어 사전 훈련된 대형 모델을 기반으로 적용하기가 어려워지는 경우가 많습니다. 특히 시각적 모델의 경우 이미지의 다양성이 언어를 훨씬 뛰어넘기 때문에 다운스트림 미세 조정 학습으로 인해 비전 관련 사전 학습된 대형 모델의 견고성이 저하되는 문제가 특히 두드러집니다.
이전 연구 방법은 일반적으로 모델 통합 및 기타 방법을 통해 모델 매개변수 수준에서 암시적으로 미세 조정된 사전 훈련된 모델의 견고성을 유지합니다. 그러나 이들 연구에서는 미세 조정이 모델의 분포를 벗어난 성능 저하로 이어지는 본질적인 이유를 분석하지 않았으며, 위에서 언급한 대형 모델의 미세 조정 후 견고성이 감소하는 문제를 명확하게 해결하지 못했습니다.
본 연구는 크로스 모달 대형 모델을 기반으로 사전 학습된 대형 모델의 강인성 손실에 대한 본질적인 이유를 인과성 관점에서 분석하고 이에 따라 모델의 강인성을 크게 향상시킬 수 있는 방법을 제안합니다. 모델을 미세 조정하세요. 이 방법을 사용하면 모델이 다운스트림 작업에 적응하면서 강력한 견고성을 유지할 수 있으며 실제 응용 프로그램의 요구 사항을 더 잘 충족할 수 있습니다.
2021년 OpenAI에서 출시한 대규모 교차 모달 사전 학습 모델 CLIP(Contrastive Language-Image Pre-training)을 예로 들어 보겠습니다. CLIP은 대조 이미지-텍스트를 기반으로 하는 대규모 교차 모달 사전 학습 모델입니다. 공동 학습 모델은 Stable Diffusion과 같은 생성 모델의 기초입니다. 이 모델은 약 4억 개의 이미지-텍스트 쌍이 포함된 대규모 다중 소스 데이터에 대해 훈련되었으며 어느 정도 분포 변화에 강력한 인과 관계를 학습합니다.
그러나 단일 기능 다운스트림 데이터로 CLIP을 미세 조정하는 경우 훈련 이미지의 비의미적 표현과 의미적 표현이 매우 얽혀 있기 때문에 모델에서 학습한 이러한 인과 지식을 파괴하기 쉽습니다. 예를 들어 CLIP 모델 전송을 "농장"의 다운스트림 시나리오에 적용하면 많은 훈련 이미지에 풀밭에 있는 "소"가 표시됩니다. 이 시점에서 미세 조정 훈련을 통해 모델은 잔디의 "소"가 아닌 의미론적 표현에 의존하여 이미지의 의미론을 예측하는 방법을 학습할 수 있습니다. 그러나 이 상관관계가 반드시 맞는 것은 아닙니다. 예를 들어 "소"가 도로에 나타날 수도 있습니다. 따라서 모델을 미세 조정하고 훈련한 후에는 견고성이 감소하고 적용 중 출력 결과가 극도로 불안정해지고 제어성이 부족해질 수 있습니다.
팀의 다년간의 대형 모델 구축 및 학습 경험을 바탕으로 이 작업은 사전 학습된 모델의 미세 조정으로 인해 발생하는 견고성 감소 문제를 인과 관계의 관점에서 재검토합니다. 인과관계 모델링 및 분석을 기반으로 본 연구에서는 이미지 마스크를 기반으로 반사실적 샘플을 구성하고 마스크 이미지 학습을 통해 모델 견고성을 향상시키는 미세 조정 학습 방법을 제안합니다.
구체적으로, 다운스트림 훈련 이미지의 허위 상관 관계를 깨기 위해 이 작업은 비의미적 영역을 조작하기 위해 이미지의 특정 영역의 콘텐츠를 마스킹하고 대체하는 CAM(클래스 활성화 맵) 기반 방법을 제안합니다. 이미지의 의미 표현 또는 의미론적 표현은 반사실적 샘플을 생성합니다. 미세 조정된 모델은 증류를 통해 사전 훈련된 모델에 의해 이러한 반사실적 샘플의 표현을 모방하는 방법을 학습할 수 있으므로 의미적 요인과 비의미적 요인의 영향을 더 효과적으로 분리하고 다운스트림 필드의 분포 이동에 대한 적응성을 향상시킬 수 있습니다.
실험에 따르면 이 방법은 다운스트림 작업에서 사전 훈련된 모델의 성능을 크게 향상시키는 동시에 기존 대형 모델 미세 조정 훈련 방법에 비해 견고성을 향상시키는 데 상당한 이점이 있습니다.
이 작업의 중요한 의의는 사전 훈련된 대형 모델이 딥러닝 패러다임에서 물려받은 '블랙박스'를 어느 정도 열고, '해석 가능성'과 '제어 가능성' 문제를 해결한다는 점입니다. 대형 모델 중요한 탐색을 통해 사전 훈련된 대형 모델을 통한 실질적인 생산성 향상에 더 가까워졌습니다.
중산대학교 HCP 팀은 Transformer 메커니즘이 등장한 이후 수년 동안 대형 모델 기술 패러다임에 대한 연구에 참여해 왔으며 대형 모델의 훈련 효율성을 향상하고 인과 모델을 도입하는 데 전념하고 있습니다. 대형 모델의 "제어성" 문제를 해결합니다. 수년에 걸쳐 팀은 시각, 언어, 음성 및 교차 양식에 대한 여러 대규모 사전 훈련 모델을 독립적으로 연구하고 개발했습니다. Huawei의 Noah's Ark Laboratory와 공동으로 개발한 "Wukong" 교차 모드 대형 모델(링크: https:/ /arxiv.org/abs/2202.06767)이 전형적인 경우입니다.
팀 소개
쑨원대학교 인간-컴퓨터 지능 융합 연구실(HCP Lab)은 다중 모드 인지 컴퓨팅, 로봇 공학 및 임베디드 시스템, 메타버스 및 디지털 휴먼, 제어 가능한 콘텐츠 생성, 현장에서 체계적인 연구를 수행하고, 제품 프로토타입의 심층적인 응용 시나리오를 만들고, 다수의 원천 기술을 수출하고, 기업가 팀을 육성합니다. 이 연구실은 2010년 IAPR 연구원인 Lin Liang 교수가 설립했으며 중국 이미지 그래픽 학회 과학기술상 1등상, Wu Wenjun 자연과학상, 지방 자연과학 1등상 등을 수상했습니다. Liang Xiaodan, Wang Keze와 같은 국가 수준의 젊은 인재를 양성했습니다.
위 내용은 Sun Yat-sen University HCP 연구실의 새로운 혁신: 인과 패러다임을 사용하여 다중 모드 대형 모델 업그레이드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

무엇? 주토피아는 국내 AI로 현실이 되는 걸까? 영상과 함께 노출된 것은 '켈링'이라는 국산 대형 영상세대 신형 모델이다. Sora는 유사한 기술 경로를 사용하고 자체 개발한 여러 기술 혁신을 결합하여 크고 합리적인 움직임뿐만 아니라 물리적 세계의 특성을 시뮬레이션하고 강력한 개념적 결합 능력과 상상력을 갖춘 비디오를 제작합니다. 데이터에 따르면 Keling은 최대 1080p의 해상도로 30fps에서 최대 2분의 초장 영상 생성을 지원하며 다양한 화면비를 지원합니다. 또 다른 중요한 점은 Keling이 실험실에서 공개한 데모나 비디오 결과 시연이 아니라 단편 비디오 분야의 선두주자인 Kuaishou가 출시한 제품 수준 애플리케이션이라는 점입니다. 더욱이 백지 작성이 아닌 실용성에 중점을 두고, 출시되자마자 온라인에 진출하는 데 중점을 두고 있다. 콰이잉에서는 커링의 대형 모델이 출시됐다.

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라
