작은 데이터 세트를 사용하여 딥 러닝 모델을 개선하는 방법은 무엇입니까?
번역가 | Bugatti
리뷰어 | Sun Shujuan
우리 모두 알고 있듯이 딥 러닝 모델에는 데이터 수요가 많습니다. 딥 러닝 모델에 더 많은 데이터를 제공할수록 성능이 향상됩니다. 불행하게도 대부분의 실제 상황에서는 이것이 불가능합니다. 데이터가 충분하지 않을 수도 있고, 데이터를 수집하기에는 비용이 너무 많이 들 수도 있습니다.
이 기사에서는 더 많은 데이터를 사용하지 않고 딥 러닝 모델을 개선하는 네 가지 방법을 논의합니다.
딥러닝에는 왜 그렇게 많은 데이터가 필요한가요?
딥 러닝 모델은 복잡한 관계를 이해하는 방법을 배울 수 있다는 점에서 매력적입니다. 딥 러닝 모델에는 여러 계층이 포함되어 있습니다. 각 계층은 점점 더 복잡해지는 데이터 표현을 이해하는 방법을 배웁니다. 첫 번째 레이어는 가장자리와 같은 간단한 패턴을 감지하는 방법을 학습할 수 있습니다. 두 번째 레이어는 모양과 같은 가장자리의 패턴을 보는 방법을 학습할 수 있습니다. 세 번째 레이어는 이러한 모양 등으로 구성된 개체를 인식하는 방법을 학습할 수 있습니다.
각 레이어는 일련의 뉴런으로 구성되며, 이는 차례로 이전 레이어의 각 뉴런에 연결됩니다. 이러한 모든 레이어와 뉴런은 최적화할 매개변수가 많다는 것을 의미합니다. 따라서 좋은 점은 딥 러닝 모델이 강력한 기능을 가지고 있다는 것입니다. 그러나 단점은 과적합이 발생하기 쉽다는 것을 의미합니다. 과적합은 모델이 훈련 데이터에서 너무 많은 간섭 신호를 포착하여 새 데이터에 적용할 수 없음을 의미합니다.
충분한 데이터가 있으면 딥 러닝 모델은 매우 복잡한 관계를 감지하는 방법을 학습할 수 있습니다. 그러나 데이터가 충분하지 않으면 딥 러닝 모델이 이러한 복잡한 관계를 이해할 수 없습니다. 딥러닝 모델이 학습할 수 있으려면 충분한 데이터가 있어야 합니다.
하지만 더 많은 데이터를 수집하는 것이 불가능하다면 이를 극복할 수 있는 몇 가지 기술이 있습니다.
1. 전이 학습은 소규모 데이터 세트로 딥 러닝 모델을 훈련하는 데 도움이 됩니다.
전이 학습은 하나의 문제에 대해 훈련된 모델을 가져와 다양한 관련 문제를 해결하기 위한 출발점으로 사용할 수 있는 기계 학습 기술입니다.
예를 들어, 거대한 개 이미지 데이터 세트에 대해 훈련된 모델을 가져와 개 품종을 식별하는 모델을 훈련하기 위한 출발점으로 사용할 수 있습니다.
첫 번째 모델에서 학습한 기능을 재사용하여 시간과 리소스를 절약할 수 있기를 바랍니다. 두 응용 프로그램이 얼마나 다른지에 대한 경험 법칙은 없습니다. 그러나 원본 데이터 세트와 새 데이터 세트가 매우 다른 경우에도 전이 학습을 계속 사용할 수 있습니다.
예를 들어, 고양이 이미지에 대해 훈련된 모델을 가져와 낙타 유형을 인식하는 모델 훈련의 출발점으로 사용할 수 있습니다. 첫 번째 모델에서 네 다리의 기능을 알아내는 것이 낙타를 식별하는 데 도움이 되기를 바랍니다.
전이 학습에 대해 자세히 알아보려면 "자연어 처리를 위한 전이 학습"을 참조하세요. Python 프로그래머라면 "Practical Transfer Learning with Python"도 도움이 될 것입니다.
2. 데이터 증대를 시도해 보세요
데이터 증대는 기존 데이터를 가져와서 새로운 합성 데이터를 생성할 수 있는 기술입니다.
예를 들어 개 이미지 데이터세트가 있는 경우 데이터 증대를 사용하여 새로운 개 사진을 생성할 수 있습니다. 이미지를 무작위로 자르고, 수평으로 뒤집고, 노이즈를 추가하는 등 여러 가지 기술을 사용하여 이를 수행할 수 있습니다.
작은 데이터 세트가 있는 경우 데이터 확대가 큰 이점이 될 수 있습니다. 새로운 데이터를 생성하면 데이터 세트의 크기를 인위적으로 늘려 딥 러닝 모델에 더 많은 데이터를 사용할 수 있습니다.
딥 러닝에 관한 이유인물은 데이터 증강에 대해 더 깊이 이해하는 데 도움이 될 것입니다.
3. 자동 인코더 사용
자동 인코더는 저차원 데이터 표현을 학습하는 데 사용되는 딥 러닝 모델입니다.
오토인코더는 데이터를 저차원 공간으로 압축하는 방법을 학습할 수 있으므로 작은 데이터 세트가 있을 때 유용합니다.
오토인코더에는 다양한 유형이 있습니다. VAE(변형 자동 인코더)는 널리 사용되는 자동 인코더 유형입니다. VAE는 생성 모델이므로 새로운 데이터를 생성할 수 있습니다. VAE를 사용하여 훈련 데이터와 유사한 새로운 데이터 포인트를 생성할 수 있기 때문에 이는 많은 도움이 됩니다. 이는 실제로 더 많은 데이터를 수집하지 않고도 데이터세트의 크기를 늘릴 수 있는 좋은 방법입니다.
원제: 소규모 데이터 세트로 딥 러닝 모델을 개선하는 방법
위 내용은 작은 데이터 세트를 사용하여 딥 러닝 모델을 개선하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

이전에 작성했던 오늘은 딥 러닝 기술이 복잡한 환경에서 비전 기반 SLAM(동시 위치 파악 및 매핑)의 성능을 향상할 수 있는 방법에 대해 논의합니다. 심층 특징 추출과 깊이 일치 방법을 결합하여 저조도 조건, 동적 조명, 질감이 약한 영역 및 심한 지터와 같은 까다로운 시나리오에서 적응을 향상하도록 설계된 다목적 하이브리드 시각적 SLAM 시스템을 소개합니다. 우리 시스템은 확장 단안, 스테레오, 단안 관성 및 스테레오 관성 구성을 포함한 여러 모드를 지원합니다. 또한 시각적 SLAM을 딥러닝 방법과 결합하여 다른 연구에 영감을 주는 방법도 분석합니다. 공개 데이터 세트 및 자체 샘플링 데이터에 대한 광범위한 실험을 통해 위치 정확도 및 추적 견고성 측면에서 SL-SLAM의 우수성을 입증합니다.

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

최근 군계는 미군 전투기가 이제 AI를 활용해 완전 자동 공중전을 완수할 수 있다는 소식에 충격을 받았다. 네, 얼마 전 미군의 AI 전투기가 최초로 공개되면서 그 미스터리가 드러났습니다. 이 전투기의 정식 명칭은 VISTA(Variable Stability Flight Simulator Test Aircraft)로 미 공군 장관이 직접 조종해 일대일 공중전을 모의 실험한 것이다. 5월 2일, 미 공군 장관 프랭크 켄달(Frank Kendall)이 X-62AVISTA를 타고 에드워드 공군 기지에서 이륙했습니다. 1시간의 비행 동안 모든 비행 작업은 AI에 의해 자동으로 완료되었습니다. Kendall은 "지난 수십 년 동안 우리는 자율 공대공 전투의 무한한 잠재력에 대해 생각해 왔지만 항상 도달할 수 없는 것처럼 보였습니다."라고 말했습니다. 그러나 지금은,

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

지난주 내부 사퇴와 외부 비판의 물결 속에서 OpenAI는 대내외적 난관에 봉착했다. - 미망인 여동생의 침해로 글로벌 열띤 논의가 촉발됐다. - '대군주 조항'에 서명한 직원들이 잇달아 폭로됐다. - 네티즌들은 울트라맨의 '' 일곱 가지 대죄" ” 소문 파기: Vox가 입수한 유출된 정보와 문서에 따르면 Altman을 포함한 OpenAI의 고위 경영진은 이러한 지분 회수 조항을 잘 알고 있었고 이에 서명했습니다. 또한 OpenAI가 직면한 심각하고 시급한 문제인 AI 보안이 있습니다. 최근 가장 눈에 띄는 직원 2명을 포함해 보안 관련 직원 5명이 퇴사하고, '슈퍼얼라인먼트' 팀이 해체되면서 OpenAI의 보안 문제가 다시 한 번 주목을 받고 있다. 포춘지는 OpenA가

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.
