ChatGPT의 부상은 고객 지원 및 벡터 데이터베이스에 무엇을 의미합니까?
Translator |. Cui Hao는 Sun Shujuan | 성공은 기회입니다. 이를 통해 판매 후에도 고객을 위한 가치를 지속적으로 창출할 수 있습니다. 성공적인 기업은 고객 서비스가 고객을 유지할 뿐만 아니라 비즈니스 수익도 증가시킨다는 것을 알고 있습니다. 고객 서비스는 추천, 추천, 고전적인 입소문을 통해 마케팅 및 영업 활동을 강화할 수 있는 과소평가된 도구입니다.
그리고
고객에게 실시간으로 지체 없이 서비스를 제공하는 것이 중요합니다. 인공 지능의 출현으로 이러한 요구 사항이 달성 가능해졌습니다.
인공지능을 활용하면 여행 중 발생하는 모든 문제에 대해 고객을 지원할 수 있습니다. 또한 인공지능이 주도하는 챗봇과 NLP, 실시간 데이터 분석 등 머신러닝(ML) 기능을 통해 실생활의 많은 문제를 해결할 수 있다. 마지막으로, 벡터 데이터베이스를 지속적으로 채택함으로써 기업은 비정형 데이터를 활용하여 고객 요구 사항을 충족할 수 있습니다. 고객 지원의 인공 지능 1960년대에는 심리학적으로 지능적인 가상 비서인 ELIZA가 의사가 환자를 진단하고 치료하는 데 도움을 주었습니다. 그 이후에는 뒷자리를 차지했습니다. 지금까지 고객은 즉각적인 만족을 요구했습니다. Hubspot 조사에 따르면 고객의 90%가 질문에 대한 즉각적인 답변을 원합니다. 또한, 보고서에 따르면 고객의 80%가 나쁜 경험을 경험한 후 서비스 회사와의 거래를 중단한다고 합니다. 이는 우수한 고객 서비스의 중요성과 24시간 내내 고객에게 제공되는 서비스의 중요성을 강조합니다. 공교롭게도 ChatGPT가 글로벌 무대에서 빛을 발하면서 우리는 인공지능이 주도하는 고객 서비스 혁명의 출현을 목격할 수 있습니다.
ChatGPT의 등장ChatGPT는 정보화 시대의 새로운 전환점으로 평가받고 있으며 복잡한 질문에 대화식으로 답변하는 인공지능 기반 플랫폼입니다. OpenAI에 의해 구축된 이 제품은 인간이 묻는 질문을 이해하고 답변하도록 설계되고 훈련되었습니다. 따라서 ChatGPT는 대화형 AI로 가능한 것의 경계를 허물고 있습니다. ChatGPT의 정의
ChatGPT: 정보화 시대의 혁명? ChatGPT는 대화 형식으로 인간과 대화할 수 있는 GPT-3.5를 기반으로 구축된 고급 챗봇입니다. 이는 문장의 다음 단어를 정확하게 예측하도록 훈련된 LLM(대형 언어 모델)을 따릅니다. 휴대폰의 자동 완성 기능처럼 보이지만 ChatGPT는 비현실적인 규모로 이를 수행합니다. 연구자들은 더 많은 데이터에 노출될수록 대화 능력이 향상된다는 것을 알게 되었습니다. 아래 목록은 ChatGPT의 비즈니스 사용 사례 중 일부입니다.
고객 서비스
고객과의 수많은 상호 작용에 대해 ChatGPT를 교육하면 가장 효과적으로 대응할 수 있습니다. 자주 묻는 질문(FAQ) 자동으로 응답을 생성합니다. 텍스트 생성
적절한 쿼리를 제출하여 소셜 미디어 게시물이나 제품 설명을 작성할 수 있습니다. 감정 분석
피드백 설명에 있는 감정을 분석하여 고객의 감정을 모니터링할 수 있습니다.
대화형 인공지능
환자 데이터를 빠르게 분석하여 올바른 진단과 치료 계획을 추천할 수 있습니다(ELIZA의 고급 형태).
가상 비서
ChatGPT를 사용하면 메시지, 이메일 또는 모든 콘텐츠를 매우 쉽게 생성할 수 있습니다.
GPT-4 Incredible Desire
ChatGPT의 기능을 이해하는 동안 OpenAI는 이를 GPT-4 형태로 업그레이드했습니다. 이전 버전에는 1,750억 개의 매개변수가 있었던 반면, GPT-4는 1조 개의 매개변수를 가지고 있어 믿을 수 없을 만큼 빠르고 스마트해졌습니다.
GPT-4는 귀하가 요청하는 모든 쿼리에 대해 1조 개의 매개변수로 처리하여 가장 정확한 결과를 제공합니다. 아직 출시되지는 않았지만 GPT-4는 고객 서비스에 충격적인 변화를 가져올 것입니다.
ChatGPT의 고객 서비스 챌린지
ChatGPT는 액세스할 수 있는 정보를 기반으로 제출된 문의에 응답합니다. 따라서 이 도구를 사용하여 고객을 먼저 교육하지 않고 웹사이트에서 고객에게 서비스를 제공하는 경우에는 제한이 있습니다. 또한 웹사이트, 기타 포털 등 인터넷에 연결된 자산에서만 회사에 대한 정보를 얻을 수 있으므로 답변이 정확하지 않거나 도움이 되지 않을 수 있습니다. ChatGPT의 두 번째 한계는 고객 문의의 본질적인 특성입니다. 대부분의 고객 질문은 모호하며 적절한 답변을 제공하려면 논리적 번역이 필요합니다. 불행히도 ChatGPT는 아직 이 기술을 마스터하지 못했습니다. ChatGPT는 아직 고객 서비스를 완벽하게 관리할 수 없을 수도 있지만 그렇다고 해서 고객 경험을 개선하기 위해 AI를 적용하는 것을 중단해서는 안 됩니다.
AI 고객 서비스 에이전트 구축
많은 조직에서 AI 전략을 엔진을 통해 자동화된 응답을 생성하여 고객 서비스를 개선하는 것으로 제한하지만 이러한
응답대부분의 조직에서는 그것들은 비교적 흔합니다. 그러나 고객은 전문적인 역량을 더 잘 입증하는 맞춤형 답변을 원하며 응답 시간에 대한 요구 사항도 있습니다. NLP(자연어 처리) 및 NLU(자연어 이해)를 사용하여 고객 쿼리의 컨텍스트를 이해하는 CS 에이전트를 구축하여 정확한 주문형 고객 경험을 제공할 수 있습니다. 여기에 인공지능이 구동하는 검색 기능을 접목해 인간과 같은 원활한 가상 대화를 제공할 수 있다.
AI 경험을 제공할 때 가장 큰 과제는 기업이 관리하고 분석하기 복잡한 대량의 비정형 데이터를 보유하고 있다는 것입니다. 이전에는 구조화되지 않은 데이터를 관리하는 데 벡터 데이터베이스가 사용되었지만 이러한 인식은 ChatGPT의 출현으로 빠르게 바뀌었습니다. 아래 표시된 아키텍처는 원활하고 효율적인 고객 지원 상담원 워크플로를 정의합니다.
AI 고객 지원 에이전트 구축
AI 기반 고객 지원에는 두 가지 프로세스가 포함됩니다. 하나는 인덱싱 서비스이고 다른 하나는 각각 녹색과 노란색으로 표시되는 쿼리 서비스입니다. 그들이 어떻게 작동하는지 봅시다. 인덱싱 서비스는 문서가 포함된 지식 기반으로 데이터를 전송하고 검색합니다. 지식베이스의 각 문서가 추가되거나 변경되면 Embedding의 API가 활성화되어 새로운 정보를 벡터로 변환합니다. 그런 다음 이러한 벡터는 빠른 의미 검색을 용이하게 하기 위해 벡터 데이터베이스에 추가됩니다. 쿼리 서비스를 사용하면 텍스트 쿼리를 제공할 수 있으며 Embeddings API는 인덱싱과 유사한 프로세스를 통해 이를 벡터로 변환합니다. 그런 다음 이 벡터는 데이터베이스를 통해 문서를 검색 및 일치시키고 최상의 결과를 제공하는 데 사용됩니다. 검색 엔진이 이미 파일의 벡터를 준비했기 때문에 수백만 개의 파일에 대해서도 이 프로세스를 쉽고 빠르게 수행할 수 있습니다. Vector 데이터베이스는 ML(머신 러닝) 모델 기반 방식에 포함된 전체 비정형 데이터를 저장, 색인화 및 검색합니다. 벡터 임베딩이라는 프로세스에서 관리할 수 있도록 데이터 개체를 숫자 값으로 표현하여 데이터 세트를 효과적으로 단순화합니다. 벡터 데이터베이스는 벡터를 서로 비교하거나 검색어의 벡터와 비교할 수 있도록 이러한 임베딩을 인덱싱합니다. 벡터 데이터베이스는 생성, 읽기, 업데이트 및 삭제와 같은 데이터 관리 기능을 용이하게 합니다. 유사성 검색과 메타데이터 필터링은 벡터 데이터베이스의 두 가지 필수 기능으로, 포괄적인 검색 기능을 제공합니다. 벡터 데이터베이스의 몇 가지 예: 동적 쿼리 계획 및 데이터 인덱스의 효율적인 로드. 다른 벡터 검색 엔진 중에서 Qdrant는 강력하고 확장 가능한 선택입니다. OpenAI, Cohere 및 AI2Labs와 같은 몇몇 회사에서는 자연어 애플리케이션을 용이하게 하는 고급 모델에 액세스할 수 있는 API를 제공합니다. 신기술을 기반으로 하는 고객 서비스는 고객 경험을 개선하고 고객 지원 능력을 향상시켜 크게 도약할 준비가 되어 있습니다. 기업은 지식 기반을 개선하기 위해 셀프 서비스 플랫폼과 챗봇에 크게 의존하여 AI 기반 대화를 개선하려고 합니다. 또한 최근 몇 년간 NLP의 발전으로 인해 가상 지원이 원활한 고객 서비스 도구가 되었습니다. 예를 들어, 이제 챗봇은 인간과 유사한 대화를 수행할 수 있으므로 복잡한 상황에서만 인간의 개입이 필요합니다. Cui Hao, 51CTO 커뮤니티 편집자, 선임 설계자는 18년의 소프트웨어 개발 및 아키텍처 경험과 10년의 분산 아키텍처 경험을 보유하고 있습니다. 인덱싱 서비스
쿼리 서비스
벡터 데이터베이스란 무엇인가요?
Vertex: Google에서 구축한 Vertex AI 머신 엔진은 쉽고 확장 가능한 검색을 용이하게 하기 위해 벡터 임베딩의 고유한 측면을 기반으로 벡터를 구성하는 지연 시간이 짧은 벡터 데이터베이스입니다.
을 생성하여 ML 알고리즘과 모델에 지능적으로 정보를 제공할 수 있습니다.
고객 지원의 미래
번역자 소개
위 내용은 ChatGPT의 부상은 고객 지원 및 벡터 데이터베이스에 무엇을 의미합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다
