> 기술 주변기기 > 일체 포함 > 인공지능의 '상식' 문제를 해결하는 방법

인공지능의 '상식' 문제를 해결하는 방법

PHPz
풀어 주다: 2023-04-14 11:19:02
앞으로
1409명이 탐색했습니다.

번역가 | Li Rui

리뷰어 | Sun Shujuan

최근 몇 년 동안 딥 러닝은 컴퓨터 비전, 음성 인식 및 자연어 처리를 포함하여 가장 어려운 인공 지능 분야에서 큰 발전을 이루었습니다.

인공지능의 '상식' 문제를 해결하는 방법

그러나 딥러닝 시스템은 여전히 ​​일부 문제를 해결하지 못했습니다. 딥 러닝 시스템은 새로운 상황을 잘 처리하지 못하기 때문에 학습하는 데 많은 양의 데이터가 필요하고 때로는 제작자조차 혼란스럽게 만드는 기괴한 실수를 저지르기도 합니다.

일부 과학자들은 점점 더 큰 신경망을 만들고 이를 점점 더 큰 데이터 세트로 훈련함으로써 이러한 문제를 해결할 수 있다고 믿습니다. 인공지능 분야에 필요한 것은 인간의 '상식'이라고 믿는 사람들도 있다.

새 책 "Machines Like Us"에서 컴퓨터 과학자 Ronald J. Brachman과 Hector J. Levesque는 "상식"이라는 인공 지능 퍼즐의 누락된 조각에 대한 생각과 가능한 해결책을 제시합니다. 수십 년간. 업계 언론과의 인터뷰에서 Brachman은 상식이 무엇인지, 왜 기계에 상식이 없는지, 그리고 "지식 표현" 개념이 어떻게 인공 지능 커뮤니티를 올바른 방향으로 이끌 수 있는지에 대해 논의했습니다. "지식 표현"이라는 개념은 수십 년 동안 존재했지만 딥러닝 열풍 동안 보류되었습니다.

아직 가설의 영역에 갇혀 있지만, 『우리 같은 기계』라는 책은 1970년대부터 인공지능에 깊이 관여한 두 사람의 덕분에 잠재적인 연구 분야에 대한 새로운 시각을 제시합니다.

좋은 AI 시스템은 이상한 실수를 저지릅니다

Brachman은 “지난 10~12년 동안 사람들이 딥러닝에 대해 남다른 열정을 보이면서 우리가 할 수 있는 일을 할 수 있는 딥러닝 기반 시스템에 대한 연구가 많이 있었습니다. 원래는 인공 지능이 할 수 있는 모든 일에 대해 논의했습니다. ”

인공 지능 초기의 비전은 로봇 형태로 작동할 수 있는 자급자족형 자율 시스템을 만드는 것이었습니다. 특정 상황에서는 인간의 개입이 거의 또는 전혀 없습니다.

브락크먼은 “요즘 많은 사람들이 딥러닝이 무엇을 이룰 수 있는지에 열광하다 보니 연구 범위가 많이 좁아졌다. 특히 산업 분야에서는 막대한 자금 지원과 인재 채용이 경험을 바탕으로 한 연구를 추진해왔다. 또는 많은 사람들이 일반 인공 지능에 가깝다고 주장하는 시스템에 너무 많은 관심을 기울이고 있거나 '좋은 구식 인공 지능'(GOFAI) 또는 상징적 접근 방식이 완전히 구식이거나 불필요합니다."

분명히 , 인상적이기는 하지만 딥러닝 시스템은 아직 해결되지 않은 수수께끼의 문제에 직면해 있습니다. 신경망은 입력 값에 대해 특별히 고안된 수정으로 인해 기계 학습 모델이 출력을 갑작스럽고 잘못된 변경으로 만드는 적대적 공격에 취약합니다. 딥러닝은 또한 단순한 인과관계를 이해하는 데 어려움을 겪으며, 개념을 구상하고 조합하는 데도 형편없습니다. 대규모 언어 모델은 최근 특별한 관심 분야였지만 일관되고 인상적인 텍스트를 생성하는 데 있어 때로는 매우 어리석은 실수를 저지르기도 합니다.

Brachman은 "인공지능이 저지르는 실수에 대한 사람들의 인식은 멍청하고 무지해 보인다는 것이고, 인간은 그런 실수를 거의 하지 않는다는 것입니다. 그러나 중요한 것은 이러한 실수의 이유가 다소 설명하기 어렵다는 것입니다."라고 말했습니다. 이러한 실수로 인해 Brachman과 Levesque는 오늘날의 AI 기술에서 누락된 부분과 예시 중심 교육 신경망 시스템을 보완하거나 교체하는 데 필요한 것이 무엇인지 생각해 보게 되었습니다.

Brachman은 “생각해보면 이러한 시스템에 분명히 부족한 것은 인간이 상식이라고 부르는 것, 즉 많은 사람들에게 분명한 것을 보고 간단하고 분명한 결론에 빠르게 도달하고, 터무니없거나 잘못된 선택이라고 즉시 깨닫는 일을 하지 마세요.”

상식이란 무엇인가요?

AI 커뮤니티는 초창기부터 상식을 이야기해왔습니다. 실제로 1958년 John McCarthy가 작성한 최초의 인공 지능 논문 중 하나는 "상식을 갖춘 프로그램"이라는 제목이었습니다.

브래크먼은 “이것은 새로운 것도 아니고, 우리가 만들어낸 이름도 아니지만, 상식이 무엇인지, 그것이 무엇을 의미하는지 더 깊이 이해한다면 현장은 인공지능의 선구자들이 말한 핵심 의미를 망각해버렸다. 그것을 가지면 우리에게 도움이 될 것입니다. 더 중요한 것은 그것이 어떻게 작동하고 어떻게 구현될 것인지에 대한 심리학 문헌에서는 지침을 거의 찾을 수 없다는 것입니다." 책 Machines Like Us에서 Brachman과 Levesque는 상식으로 전환합니다. “평범하고 일상적이며 실용적인 목표를 달성하기 위해 일상적이고 경험적인 지식을 효과적으로 사용하는 능력”입니다.

상식은 생존에 필수적입니다. 인간과 고등동물은 경험을 통해 학습하고 매일 직면하는 대부분의 상황을 처리할 수 있는 루틴 및 자동 조종 기술을 개발하도록 진화했습니다. 하지만 일상은 사람들이 계속해서 접하는 일상 그 이상입니다. 사람들은 이전에 한 번도 본 적이 없는 새로운 상황에 직면할 때가 많습니다. 그 중 일부는 평소와 매우 다를 수 있지만 대부분의 경우 사람들은 사물을 익숙한 것과 조금 다르게 봅니다. AI 논의에서는 이를 '롱테일'이라고 부르기도 합니다.

Brachman은 “우리 생각에는 이러한 루틴이 중단되면 실제로 상식이 가장 먼저 활성화되어 사람들이 새로운 상황을 빨리 이해하고 이전에 무엇을 했는지 기억하고 빠르게 기억을 조정하고 이를 적용할 수 있게 해줍니다. ”

상식은 심리학자이자 노벨상 수상자인 다니엘 카너먼(Daniel Kahneman)이 대중화한 이중 시스템 사고 패러다임과 어떤 면에서는 다소 다릅니다. 상식은 사람들이 특별한 집중 없이 할 수 있는 대부분의 일상 업무(예: 양치질, 신발 끈 묶기, 단추 채우기, 익숙한 지역에서 운전)를 수행하는 빠른 자동 조종 시스템 1 사고가 아닙니다. 현재의 틀에서 벗어나기 위해서는 긍정적인 사고가 필요합니다.

동시에 상식은 시스템 2 사고가 아닙니다. 시스템 2 사고는 완전한 집중과 단계별 사고가 필요한 느린 사고 모드입니다(예: 6주간의 여행 계획, 소프트웨어 설계, 복잡한 문제 해결) 수학 방정식) .

Brachman은 "사람들은 문제에 대처하기 위해 깊이 생각할 수 있습니다. 이런 종류의 생각은 뇌를 지치게 하고 속도를 느리게 만듭니다. 상식적으로는 깊이 생각할 필요가 없기 때문에 거의 모든 일상 생활에서 이러한 상황을 피할 수 있습니다."

출판된 저서에서 Brachman과 Levesque는 상식이 사려 깊고 체계적인 분석보다 빠르게 작동하는 '피상적 인지 현상'임을 강조합니다.

"그것을 알아내는 데 많은 생각이 필요하다면 상식이 아닙니다. '반성적 사고'라고 생각하면 되고, '반성적'도 '생각'만큼 중요합니다."

공통 없는 AI sense 직면한 위험

상식에는 예측 가능성, 신뢰, 설명 가능성 및 책임이 필요합니다.

Brachman은 "대부분의 사람들은 이상한 실수를 하지 않습니다. 사람들이 어리석은 일을 할 수도 있지만 반성하고 나면 그러한 실수를 피할 수 있습니다. 인간은 완벽하지 않지만 어느 정도 실수는 있습니다. AI를 통한 도전 상식이 없는 시스템은 훈련의 한계에 도달하면 실수를 할 수 있다는 것입니다. Brachman은 오류가 완전히 예측할 수 없고 설명할 수 없다고 말했습니다.

Brachman은 "상식이 없는 AI 시스템에는 이러한 관점이 없고 스스로 이상한 일을 하는 것을 막을 수 있는 대안도 없으며 취약해집니다. 실수를 하면 그 실수는 그들에게 전혀 의미가 없습니다.

"라고 말했습니다. 이러한 오류는 이미지에 라벨을 잘못 붙이는 등의 무해한 오류부터 자율주행차가 잘못된 차선으로 운전하게 만드는 등 매우 위험한 오류까지 다양합니다.

Brachman과 Levesque는 책에서 "AI 시스템이 직면하는 문제가 체스를 두는 것이고 그 관심사가 게임에서 승리하는 것이라면 상식은 그들에게 적용되지 않을 것이며 사람들이 체스를 둘 때 게임을 할 때 일반적입니다. ”

따라서 인공 지능 시스템이 자동차 운전이나 인간과의 협업, 심지어 공개 대화 참여와 같은 공개 분야의 민감한 응용 프로그램에 들어갈 때 상식은 매우 중요한 역할을 할 것입니다. 이 분야에서는 항상 새롭고 흥미로운 일이 일어나고 있습니다.

Brachman과 Levesque는 저서 Machines Like Us에서 다음과 같이 썼습니다. “인공 지능 시스템이 현실 세계에서 흔히 발생하는 일을 합리적인 방식으로 처리할 수 있으려면 이미 발생한 일을 이해하는 것 이상을 수행해야 합니다. 과거에 일어난 일을 보고 내면화하는 것만으로는 미래를 예측할 수 없습니다.”

Revisiting Symbolic Artificial Intelligence

대부분의 과학자들은 현재의 AI 시스템에 상식이 부족하다는 데 동의합니다. 그러나 해결책에 관해서는 종종 의견 차이가 있습니다. 대중적인 추세는 신경망을 점점 더 크게 만들고 있습니다. 더 큰 신경망이 계속해서 점진적인 개선을 이루고 있다는 증거가 있습니다. 어떤 경우에는 대규모 신경망이 제로샷 학습 기술을 보여 훈련되지 않은 작업을 수행합니다.

그러나 더 많은 데이터와 계산이 상식 없는 인공지능 시스템의 문제를 해결하는 것이 아니라 더 크고 더 혼란스러운 수치 가중치와 행렬 연산에 숨길 뿐이라는 것을 보여주는 수많은 연구와 실험도 있습니다.

Brachman은 "이러한 시스템은 상관 관계나 패턴을 알아차리고 내면화합니다. '개념'을 형성하지 않습니다. 이러한 시스템이 언어와 상호 작용하더라도 사람들이 메커니즘을 가지고 있다고 생각하는 근본적인 심리학과 개념 없이 단순히 인간 행동을 모방할 뿐입니다."

Brachman과 Levesque는 상식적인 지식과 세상에 대한 상식적인 이해를 인코딩하는 시스템을 만드는 것을 옹호합니다.

그들은 책에 다음과 같이 적었습니다. “상식 지식은 세상에 있는 사물과 그것이 가지고 있는 속성에 관한 것이며, 우리가 개념적 구조라고 부르는 것을 매개로 합니다. 그것은 존재할 수 있는 다양한 사물과 그들이 가질 수 있는 다양한 속성에 관한 것입니다. 지식은 상징적 표현과 이러한 상징적 구조에 대한 계산 작업 수행을 통해 사용됩니다. 무엇을 해야 할지에 대한 상식적인 결정은 목표를 달성하는 방법과 관찰된 상황에 대해 무엇을 해야 할지 고려하는 것과 같습니다.

Brachman과 Levesque는 컴퓨터에 상식을 적용하기 위해 해당 분야가 상징적 인공 지능에 대한 초기 작업 중 일부를 되돌아보고 재검토해야 한다고 믿습니다. 그들은 이것을 "지식 표현" 가설이라고 부릅니다. 이 책에서는 지식 표현(KR) 시스템을 구축하는 방법과 다양한 지식을 결합하여 보다 복잡한 형태의 지식과 추론을 형성하는 방법을 자세히 설명합니다.

지식 표현(KR) 가설에 따르면 상식 지식의 표현은 두 부분으로 나누어집니다. “하나는 세계의 상태를 표현하는 세계 모델이고, 다른 하나는 개념적 지식을 표현하는 개념 모델입니다. 이것은 세계를 표현하는 데 사용할 수 있는 모델입니다. 프로젝트를 분류하기 위한 일반적인 프레임워크입니다. "

Brachman은 "우리의 견해는 일종의 기호가 존재하는 인공 지능에 대한 초기 생각으로 돌아가는 것입니다. 그리고 기호 조작 프로그램(사람들이 추론 엔진이라고 부르던 것)은 사람들이 상식이라고 부르는 세상에 대한 기본 지식, 즉 직관적이거나 순진한 물리학, 인간과 다른 에이전트가 어떻게 행동하고 의도를 가지고 있는지에 대한 기본적인 이해를 코딩하고 사용할 수 있습니다. 신념, 시간과 사건이 어떻게 작동하는지, 원인과 결과 등. 이것은 우리가 2년 동안 얻은 모든 지식입니다. 공식적으로 표현된 세상에 대한 지식은 실제로 기계의 동작에 인과적인 영향을 미칠 수 있습니다. 또한 구성성 같은 모든 작업을 수행하고 익숙한 것을 새로운 방식으로 제시합니다.”

Brachman은 책에서 제시한 가정이 미래에는 반증될 수 있다고 강조했습니다.

Brachman은 “장기적으로는 이 모든 지식을 사전 구축하거나 사전 코딩하거나 AI 시스템이 다른 방식으로 학습하도록 하는 것에 관한 것인지는 알 수 없습니다. 실험에 따르면, AI의 다음 단계는 첫 번째 단계는 이러한 지식 기반을 구축하고 시스템이 이를 사용하여 일상 생활의 예상치 못한 사건을 처리하고 익숙하고 익숙하지 않은 상황을 처리하는 방법에 대해 대략적인 추측을 하는 것입니다. ”

Brachman과 Levesque의 가설은 Cyc와 같은 상징적 상식 지식 기반을 기반으로 하는 이전의 노력을 기반으로 하며, 이 프로젝트는 1980년대로 거슬러 올라가며 세계에 대한 수백만 개의 규칙과 개념을 수집했습니다.

Brachman은 “더 나아가서 자율적인 의사 결정 기계가 일상적인 의사 결정 상황에서 이러한 것들을 어떻게 사용하는지에 초점을 맞춰야 한다고 생각합니다. 사실적 지식을 축적하고 위험한 유형에 답할 수 있는 것입니다. 하지만 시끄러운 세상에서 일하고 예상치 못한 놀라움에 합리적이고 신속하게 대응할 수 있다는 것은 완전히 다른 문제입니다. "

머신러닝이 상식적으로 중요한 역할을 합니까? Brachman은 머신러닝 기반 시스템이 인공지능을 인식하는 데 계속 핵심 역할을 할 것이라고 말했습니다.

그는 “나는 인공 망막의 픽셀을 처리하기 위해 1차 술어 미적분학을 사용하거나 속도 신호 처리를 처리하기 위한 기호 운영 체제를 사용하도록 강요하지 않을 것입니다. 이러한 기계 학습 시스템은 저감각 수준 인식 작업에 매우 좋습니다. 아직 이해되지 않은 것들은 인지 사슬에서 얼마나 높은지, 사람들이 현장에서 보는 것과 자연어 사이에 개념과 연결을 형성하지 않기 때문에 끝까지 도달하지 못합니다.” 인공지능의 '상식' 문제를 해결하는 방법

신경망 및 기호 시스템. 조합은 최근 몇 년 동안 점점 더 두드러지고 있는 아이디어입니다. Gary Marcus, Luis Lamb, Joshua Tenenbaum 등은 인공 지능의 현재 과제를 해결하기 위해 기호 및 학습 기반 시스템의 장점을 결합하는 "신경 기호" 시스템의 개발을 제안하고 있습니다.

Brachman은 현장에서 수행되는 많은 작업에 동의하지만 하이브리드 AI에 대한 현재의 관점에는 약간의 조정이 필요하다고 말합니다.

그는 다음과 같이 말했습니다. “현재의 모든 신경 기호 시스템은 상식과 수학, 무거운 계획 및 심층 분석의 기초가 되는 보다 구조화되고 심층적인 상징적 추론 간의 차이를 설명하는 데 어려움을 겪을 것이라고 생각합니다. 이 하이브리드 AI에서 무엇을 볼 수 있기를 바랍니다. 세상은 정말 상식을 생각하고, 기계가 인간처럼 상식을 사용하게 하고, 인간이 하는 것과 같은 일을 하게 합니다.”

원제:

AI의 '공통'을 해결하는 방법. 감각' 문제

​, 작성자: Ben Dickson​

위 내용은 인공지능의 '상식' 문제를 해결하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

관련 라벨:
원천:51cto.com
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
최신 이슈
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿