Jeff Dean 외의 신작: 언어 모델을 다른 각도에서 보면 규모가 충분히 크지 않아 발견할 수 없음
최근 몇 년 동안 언어 모델은 자연어 처리(NLP)에 혁명적인 영향을 미쳤습니다. 매개변수와 같은 언어 모델을 확장하면 다양한 다운스트림 NLP 작업에서 더 나은 성능과 샘플 효율성을 얻을 수 있는 것으로 알려져 있습니다. 많은 경우 스케일링이 성능에 미치는 영향은 스케일링 법칙을 통해 예측할 수 있는 경우가 많으며, 대부분의 연구자들은 예측 가능한 현상을 연구해 왔습니다.
반대로 Jeff Dean, Percy Liang 등 16명의 연구자가 "Emergent Abilities of Large Language Models"라는 논문에서 공동으로 대형 모델의 예측 불가능 현상을 논의하고 이를 대형 언어 모델의 출현이라고 불렀습니다. . 응급 능력. 소위 창발(emergence)은 어떤 현상이 더 작은 모델에는 존재하지 않지만 더 큰 모델에는 존재한다는 것을 의미합니다. 그들은 모델의 이러한 능력이 창발적이라고 믿습니다.
아이디어로서의 창발은 물리학, 생물학, 컴퓨터 과학과 같은 분야에서 오랫동안 논의되어 왔습니다. 이 논문은 Steinhardt의 연구에서 채택되고 1972년에 뿌리를 둔 창발의 일반적인 정의로 시작합니다. 노벨상 수상자이자 물리학자인 필립 앤더슨(Philip Anderson)이 쓴 Is Different는 다음과 같습니다.
이 기사에서는 학습 계산 및 모델 매개변수로 측정되는 모델 크기의 출현을 살펴봅니다. 구체적으로, 본 논문에서는 대규모 언어 모델의 창발적 역량을 소규모 모델에는 없지만 대규모 모델에는 존재하는 역량으로 정의합니다. 따라서 소규모 모델의 성능 향상을 단순히 추정하는 것만으로는 대규모 모델을 예측할 수 없습니다. 축소 모델. 이 연구는 다양한 이전 작업에서 관찰된 모델의 새로운 기능을 조사하고 이를 스몰샷 큐잉 및 강화된 큐잉과 같은 설정으로 분류합니다.
모델의 이러한 창발 기능은 이러한 기능을 획득하는 이유와 더 큰 규모가 더 창발적인 기능을 획득하는지 여부에 대한 향후 연구에 영감을 주고 이 연구의 중요성을 강조합니다. ㅋㅋㅋ 예를 들어, GPT-3 프롬프트에서 사전 훈련된 언어 모델 작업 프롬프트가 주어지면 모델은 추가 훈련이나 매개변수의 그라데이션 업데이트 없이 응답을 완료할 수 있습니다. 또한 Brown et al.은 모델 컨텍스트(입력)의 일부 입력 및 출력 예를 프롬프트(서문)로 사용한 다음 모델에 보이지 않는 추론 작업을 수행하도록 요청하는 소표본 프롬프트를 제안했습니다. 그림 1은 예시 프롬프트를 보여줍니다.
BIG-Bench: 그림 2A-D는 200개 이상의 언어 모델 평가 벤치마크 제품군인 BIG-Bench의 4가지 긴급 Few-Shot 프롬프트 작업을 보여줍니다. 그림 2A는 3자리 숫자의 덧셈과 뺄셈, 2자리 숫자의 곱셈을 테스트하는 산술 벤치마크를 보여줍니다. 표 1은 BIG-Bench의 더욱 새로운 기능을 보여줍니다.
현재는 소규모 샘플 힌트가 대규모 언어 모델과 상호 작용하는 가장 일반적인 방법이지만 최근 연구에서는 언어 모델의 기능을 더욱 향상시키기 위해 몇 가지 다른 힌트와 미세 조정 전략을 제안했습니다. 또한 이 기사에서는 기술이 충분히 큰 모델에 적용되기 전에 개선되지 않거나 유해한 경우 새로운 기능으로 간주합니다.
다단계 추론: 추론 작업, 특히 다단계 추론과 관련된 작업은 항상 언어 모델과 NLP 모델에 있어 큰 도전이었습니다. 생각의 연쇄라고 불리는 최근의 프롬프트 전략을 사용하면 언어 모델이 최종 답변을 제공하기 전에 일련의 중간 단계를 생성하도록 안내하여 이러한 유형의 문제를 해결할 수 있습니다. 그림 3A에 표시된 대로 1023개의 훈련 FLOP(~100B 매개변수)로 확장할 때 사고 체인 프롬프트는 중간 단계 없이 표준 프롬프트만 능가했습니다.
명령(명령 따르기): 그림 3B에 표시된 것처럼 Wei et al.은 훈련 FLOP가 7·10^21(8B 매개변수) 이하일 때 명령 미세 조정 기술이 모델 성능에 해를 끼친다는 것을 발견했습니다. 훈련 FLOP를 10^23(~100B 매개변수)으로 확장하면 성능이 향상될 수 있습니다.
프로그램 실행: 그림 3C에 표시된 것처럼 8비트 추가의 도메인 내 평가에서 스크래치 패드를 사용하면 ~9 · 10^19 훈련 FLOP(40M 매개변수) 이상의 모델에만 도움이 됩니다. 그림 3D는 이러한 모델이 ~1.3 · 10^20 훈련 FLOP(100M 매개변수)에서 발생하는 도메인 외부 9비트 추가로 일반화될 수도 있음을 보여줍니다.
이 기사에서는 지금까지 특정 계산 규모에서만 의미 있는 성능이 관찰되었던 언어 모델의 새로운 힘에 대해 논의합니다. 모델의 이러한 새로운 기능은 다양한 언어 모델, 작업 유형 및 실험 시나리오에 걸쳐 있을 수 있습니다. 이러한 출현의 존재는 추가 확장이 언어 모델의 기능을 더욱 확장할 수 있음을 의미합니다. 이 능력은 최근 발견된 언어 모델 확장의 결과입니다. 그것이 어떻게 등장했는지, 그리고 더 많은 확장이 더 많은 창발 기능을 가져올지 여부는 NLP 분야에서 중요한 향후 연구 방향이 될 수 있습니다.
자세한 내용은 원문을 참고해주세요.
위 내용은 Jeff Dean 외의 신작: 언어 모델을 다른 각도에서 보면 규모가 충분히 크지 않아 발견할 수 없음의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











MySQL 시작이 실패하는 데는 여러 가지 이유가 있으며 오류 로그를 확인하여 진단 할 수 있습니다. 일반적인 원인에는 포트 충돌 (포트 점유 체크 및 구성 수정), 권한 문제 (서비스 실행 사용자 권한 실행), 구성 파일 오류 (파라미터 설정 확인), 데이터 디렉토리 손상 (데이터 복원 또는 테이블 공간 재건), IBDATA 테이블 공간 문제 (IBDATA1 파일 확인), 플러그로드 (확인 오류 로그)가 포함됩니다. 문제를 해결할 때 오류 로그를 기반으로 문제를 분석하고 문제의 근본 원인을 찾고 문제를 방지하고 해결하기 위해 정기적으로 데이터를 백업하는 습관을 개발해야합니다.

MySQL은 JSON 데이터를 반환 할 수 있습니다. json_extract 함수는 필드 값을 추출합니다. 복잡한 쿼리의 경우 where 절을 사용하여 JSON 데이터를 필터링하지만 성능 영향에주의하십시오. JSON에 대한 MySQL의 지원은 지속적으로 증가하고 있으며 최신 버전 및 기능에주의를 기울이는 것이 좋습니다.

데이터베이스 산 속성에 대한 자세한 설명 산 속성은 데이터베이스 트랜잭션의 신뢰성과 일관성을 보장하기위한 일련의 규칙입니다. 데이터베이스 시스템이 트랜잭션을 처리하는 방법을 정의하고 시스템 충돌, 전원 중단 또는 여러 사용자의 동시 액세스가 발생할 경우에도 데이터 무결성 및 정확성을 보장합니다. 산 속성 개요 원자력 : 트랜잭션은 불가분의 단위로 간주됩니다. 모든 부분이 실패하고 전체 트랜잭션이 롤백되며 데이터베이스는 변경 사항을 유지하지 않습니다. 예를 들어, 은행 송금이 한 계정에서 공제되지만 다른 계정으로 인상되지 않은 경우 전체 작업이 취소됩니다. BeginTransaction; updateAccountssetBalance = Balance-100WH

sqllimit 절 : 쿼리 결과의 행 수를 제어하십시오. SQL의 한계 절은 쿼리에서 반환 된 행 수를 제한하는 데 사용됩니다. 이것은 대규모 데이터 세트, 페이지 진화 디스플레이 및 테스트 데이터를 처리 할 때 매우 유용하며 쿼리 효율성을 효과적으로 향상시킬 수 있습니다. 구문의 기본 구문 : SelectColumn1, Collect2, ... Fromtable_namelimitnumber_of_rows; 번호_of_rows : 반환 된 행 수를 지정하십시오. 오프셋이있는 구문 : SelectColumn1, Column2, ... Fromtable_namelimitOffset, number_of_rows; 오프셋 : skip

MySQL 데이터베이스 성능 최적화 안내서 리소스 집약적 응용 프로그램에서 MySQL 데이터베이스는 중요한 역할을 수행하며 대규모 트랜잭션 관리를 담당합니다. 그러나 응용 프로그램 규모가 확장됨에 따라 데이터베이스 성능 병목 현상은 종종 제약이됩니다. 이 기사는 일련의 효과적인 MySQL 성능 최적화 전략을 탐색하여 응용 프로그램이 고 부하에서 효율적이고 반응이 유지되도록합니다. 실제 사례를 결합하여 인덱싱, 쿼리 최적화, 데이터베이스 설계 및 캐싱과 같은 심층적 인 주요 기술을 설명합니다. 1. 데이터베이스 아키텍처 설계 및 최적화 된 데이터베이스 아키텍처는 MySQL 성능 최적화의 초석입니다. 몇 가지 핵심 원칙은 다음과 같습니다. 올바른 데이터 유형을 선택하고 요구 사항을 충족하는 가장 작은 데이터 유형을 선택하면 저장 공간을 절약 할 수있을뿐만 아니라 데이터 처리 속도를 향상시킬 수 있습니다.

기본 키는 데이터베이스의 각 행을 고유하게 식별하는 키 속성이기 때문에 MySQL 기본 키는 비어있을 수 없습니다. 기본 키가 비어 있으면 레코드를 고유하게 식별 할 수 없으므로 데이터 혼동으로 이어질 수 있습니다. 자체 점수 정수 열 또는 UUID를 기본 키로 사용하는 경우 효율성 및 우주 점유와 같은 요소를 고려하고 적절한 솔루션을 선택해야합니다.

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

MySQL 및 MariaDB 데이터베이스의 효과적인 모니터링은 최적의 성능을 유지하고 잠재적 인 병목 현상을 식별하며 전반적인 시스템 신뢰성을 보장하는 데 중요합니다. Prometheus MySQL Expler는 능동적 인 관리 및 문제 해결에 중요한 데이터베이스 메트릭에 대한 자세한 통찰력을 제공하는 강력한 도구입니다.
