DeepDream은 예술적 이미지 수정 기술로, 주로 훈련된 컨벌루션 신경망 CNN을 기반으로 이미지를 생성합니다.
이미지를 생성할 때 신경망은 동결됩니다. 즉, 네트워크의 가중치는 더 이상 업데이트되지 않으며 입력 이미지만 업데이트하면 됩니다. 일반적으로 사용되는 사전 훈련된 컨벌루션 네트워크에는 Google의 Inception, VGG 네트워크 및 ResNet 네트워크 등이 포함됩니다.
DeePDream의 기본 단계:
설정된 조건이 충족될 때까지 2, 3, 4단계를 반복합니다.
다음은 Keras를 사용하여 DeepDream을 구현하는 일반적인 프로세스입니다.
[1]에서:
# --------------- from tensorflow import keras import matplotlib.pyplot as plt %matplotlib inline base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) plt.show()
위는 Keras와 함께 제공되는 해안선 사진입니다. 이 그림의 변경 사항은 다음과 같습니다.
In [2]:
# 使用Inception V3实现 from keras.applications import inception_v3 # 使用预训练的ImageNet权重来加载模型 model = inception_v3.InceptionV3(weights="imagenet", # 构建不包含全连接层的Inceptino include_top=False) Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 87916544/87910968 [==============================] - 74s 1us/step 87924736/87910968 [==============================] - 74s 1us/step
In [3]:
model.summary()
In [4]:
# 层的名称 + 系数:该层对需要最大化的损失的贡献大小 layer_settings = {"mixed4":1.0, "mixed5":1.5, "mixed6":2.0, "mixed7":2.5} outputs_dict = dict( [ (layer.name, layer.output) # 层的名字 + 该层的输出 for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) outputs_dict
Out[4]:
{'mixed4': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed4')>, 'mixed5': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed5')>, 'mixed6': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed6')>, 'mixed7': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed7')>}
In [5]:
# 特征提取 feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) feature_extractor
Out[5]:
<keras.engine.functional.Functional at 0x15b5ff0d0>
In [6]:
def compute_loss(image): features = feature_extractor(image)# 特征提取 loss = tf.zeros(shape=())# 损失初始化 for name in features.keys():# 遍历层 coeff = layer_settings[name] # 某个层的系数 activation = features[name]# 某个层的激活函数 #为了避免出现边界伪影,损失中仅包含非边界的像素 loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) # 将该层的L2范数添加到loss中; return loss
In [7]:
import tensorflow as tf @tf.function def gradient_ascent_step(image, lr): # lr--->learning_rate学习率 with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image)# 调用计算损失方法 grads = tape.gradient(loss, image)# 梯度更新 grads = tf.math.l2_normalize(grads) image += lr * grads return loss, image def gradient_ascent_loop(image, iterations, lr, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, lr) if max_loss is not None and loss > max_loss: break print(f"第{i}步的损失值是{loss:.2f}") return image
In [8]:
import numpy as np array = np.array([[1,2,3], [4,5,6]] ) array
Out[8]:
array([[1, 2, 3], [4, 5, 6]])
In [9]:
array.shape
Out[9]:
(2, 3)
In [10]:
array1 = np.expand_dims(array,axis=0) array1
Out[ 10] :
array([[[1, 2, 3], [4, 5, 6]]])
In [11]:
array1.shape
Out[11]:
(1, 2, 3)
In [12]:
array2 = np.expand_dims(array,axis=1) array2
Out[12]:
array([[[1, 2, 3]], [[4, 5, 6]]])
In [13]:
array2.shape
Out[13] :
(2, 1, 3)
In [14]:
array3 = np.expand_dims(array,axis=-1) array3
Out[14]:
array([[[1], [2], [3]], [[4], [5], [6]]])
In [15]:
array3.shape
Out[15]:
(2, 3, 1)
np.clip( array, min(array), max(array), out=None):
In [16 ]:
array = np.array([1,2,3,4,5,6]) np.clip(array, 2, 5)# 输出长度和原数组相同
Out[16]:
array([2, 2, 3, 4, 5, 5])
In [17]:
array = np.arange(18).reshape((6,3)) array
Out[17]:
array([[ 0,1,2], [ 3,4,5], [ 6,7,8], [ 9, 10, 11], [12, 13, 14], [15, 16, 17]])
In [18]:
np.clip(array, 5, 15)
Out[18]:
array([[ 5,5,5], [ 5,5,5], [ 6,7,8], [ 9, 10, 11], [12, 13, 14], [15, 15, 15]])
In [19 ]:
step = 20.#梯度上升的步长 num_octave = 3# 运行梯度上升的尺度个数 octave_scale = 1.4# 两个尺度间的比例大小 iterations = 30# 在每个尺度上运行梯度上升的步数 max_loss = 15.# 损失值若大于15,则中断梯度上升过程
In [20]:
import numpy as np def preprocess_image(image_path):# 预处理 img = keras.utils.load_img(image_path)# 导入图片 img = keras.utils.img_to_array(img)# 转成数组 img = np.expand_dims(img, axis=0)# 增加数组维度;见上面解释(x,y) ---->(1,x,y) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img):# 图片压缩处理 img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. # np.clip:截断功能,保证数组中的取值在0-255之间 img = np.clip(img, 0, 255).astype("uint8") return img
In [21]:
# step = 20.#梯度上升的步长 # num_octave = 3# 运行梯度上升的尺度个数 # octave_scale = 1.4# 两个尺度间的比例大小 # iterations = 30# 在每个尺度上运行梯度上升的步数 # max_loss = 15.0# 损失值若大于15,则中断梯度上升过程 original_img = preprocess_image(base_image_path)# 预处理函数 original_shape = original_img.shape[1:3] print(original_img.shape)# 四维图像 print(original_shape)# 第2和3维度的值 (1, 900, 1200, 3) (900, 1200)
In [22]:
successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1]# 翻转 shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") # resize img = tf.image.resize(img, shape) img = gradient_ascent_loop(# 梯度上升函数调用 img, iteratinotallow=iterations, lr=step, max_loss=max_loss ) # resize upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("dream.png", deprocess_image(img.numpy()))
결과는 다음과 같습니다:
Processing octave 0 with shape (459, 612) 第0步的损失值是0.80 第1步的损失值是1.07 第2步的损失值是1.44 第3步的损失值是1.82 ...... 第26步的损失值是11.44 第27步的损失值是11.72 第28步的损失值是12.03 第29步的损失值是12.49
동시에 , 새로운 이미지가 로컬에서 생성됩니다. 사진, 효과 살펴보기:
원본 사진 다시 보기: 비교해 보면 새 사진은 약간 몽환적입니다!
위 내용은 Python Deep Learning 18 - 생성적 딥러닝의 DeepDream의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!