목차
사내, 온프레미스 GPU 클러스터는 이제 기업을 위한 옵션입니다. 오늘날 몇몇 대규모 고급 조직은 프로덕션 사용 사례에 집중하고 자체 GPU 클러스터(예: NVIDIA DGX SuperPOD)에 투자하고 있습니다. GPU 클러스터는 기업이 실행하는 데 필요한 전용 성능을 제공합니다. " >전통적으로 기업에는 AI 모델을 구동하고 제대로 실행하기에 충분한 처리 능력이 없었습니다. 기업은 필요한 리소스를 클라우드 환경에 전적으로 의존해야 할지, 아니면 클라우드와 온프레미스 리소스 간에 컴퓨팅 투자를 할당하는 것이 더 나은지 고민해 왔습니다. 사내, 온프레미스 GPU 클러스터는 이제 기업을 위한 옵션입니다. 오늘날 몇몇 대규모 고급 조직은 프로덕션 사용 사례에 집중하고 자체 GPU 클러스터(예: NVIDIA DGX SuperPOD)에 투자하고 있습니다. GPU 클러스터는 기업이 실행하는 데 필요한 전용 성능을 제공합니다.
단일 데이터 저장소를 유지하면 관리, 모니터링, 반복이 쉬워집니다. 이제 기업이 온라인 또는 클라우드 컴퓨팅 기능에 투자할 수 있는 옵션을 갖게 된 것처럼 최근 몇 년 동안 데이터를 분산하여 데이터 웨어하우스 유연성을 창출하려는 움직임이 있었습니다. " >데이터는 일반적으로 데이터 웨어하우스라고 불리는 중앙 집중식 위치에 수집, 처리 및 저장되어 회사 업무에 대한 단일 진실 소스를 생성합니다. 단일 데이터 저장소를 유지하면 관리, 모니터링, 반복이 쉬워집니다. 이제 기업이 온라인 또는 클라우드 컴퓨팅 기능에 투자할 수 있는 옵션을 갖게 된 것처럼 최근 몇 년 동안 데이터를 분산하여 데이터 웨어하우스 유연성을 창출하려는 움직임이 있었습니다.
인공 지능의 부상" >인공 지능의 부상
기술 주변기기 일체 포함 2023년 전망: 디지털 미래는 인공지능의 족쇄를 푸는 데 달려 있다

2023년 전망: 디지털 미래는 인공지능의 족쇄를 푸는 데 달려 있다

Apr 18, 2023 pm 09:38 PM
일체 포함 디지털화

인공 지능은 수십 년 동안 인공 지능을 둘러싼 과대 광고가 마침내 사실임을 입증하고 있습니다. 인공지능은 아직 인류의 구원자는 아니지만 개념에서 현실로 발전했고, 그 실제적인 적용으로 우리 세상을 더 나은 곳으로 만들고 있습니다.

2023년 전망: 디지털 미래는 인공지능의 족쇄를 푸는 데 달려 있다

그러나 인공지능의 기적적인 업적 중 상당수는 숨겨져 있으며, 그 영향력은 평범한 모습을 지나쳐야만 관찰할 수 있습니다. 30개 이상의 국가에서 운영되는 대형 보험회사를 예로 들어 보겠습니다. 회사는 매년 2천만 건 이상의 고객 통화를 처리합니다. 음성-텍스트 기술과 자연어 처리를 활용하여 통화 내용을 분석하여 특정 비즈니스 요구 사항(판매 품질 제어, 고객 표현 및 요구 사항 이해, 정서적 피드백 확보, 데이터 분석 등)을 충족할 수 있습니다.

세계 최고의 재생에너지 생산업체인 AES를 다시 살펴보겠습니다. 재생에너지는 기존 에너지보다 관리하고 모니터링하는 데 더 많은 장비가 필요합니다. 데이터 과학과 AI는 자동화를 통해 AES의 운영 효율성을 개선하고 성능 엔지니어의 행동과 결정을 향상시키는 데이터 기반 통찰력을 제공합니다. 이를 통해 가동 시간 요구 사항이 충족되고 청정 에너지가 가능한 한 빠르고 효율적이며 비용 효율적으로 고객에게 전달됩니다. AES는 또한 세상을 구하기 위해 그 역할을 다하고 있습니다.

이것들은 이미 양산에 투입된 수많은 인공지능 애플리케이션처럼 점점 주목을 받고 있습니다. 그러나 지금까지 인공 지능의 잠재력은 다음과 같은 세 가지 주요 제한 사항으로 인해 제한됩니다.

  • 데이터를 특정(중앙 집중식) 위치에 바인딩해야 함
  • 훈련 데이터 부족 .
  • 몇 가지 주요 기술 혁신으로 인해 엄청난 변화가 일어나고 있습니다. AI는 이러한 제약에서 벗어나고 있으며 기업은 이 강력한 기술을 활용할 준비가 되어 있어야 합니다.
  • 인공지능의 발전을 가로막는 제약요인인 족쇄가 앞으로 어떻게 풀릴 수 있는지 살펴보겠습니다.

AI 체인 1: 컴퓨팅 성능

전통적으로 기업에는 AI 모델을 구동하고 제대로 실행하기에 충분한 처리 능력이 없었습니다. 기업은 필요한 리소스를 클라우드 환경에 전적으로 의존해야 할지, 아니면 클라우드와 온프레미스 리소스 간에 컴퓨팅 투자를 할당하는 것이 더 나은지 고민해 왔습니다. 사내, 온프레미스 GPU 클러스터는 이제 기업을 위한 옵션입니다. 오늘날 몇몇 대규모 고급 조직은 프로덕션 사용 사례에 집중하고 자체 GPU 클러스터(예: NVIDIA DGX SuperPOD)에 투자하고 있습니다. GPU 클러스터는 기업이 실행하는 데 필요한 전용 성능을 제공합니다.

많은 수의 훈련 모델 - 소프트웨어 기반 분산 컴퓨팅 프레임워크를 활용하는 경우. 이러한 프레임워크는 다양한 GPU 노드에서 훈련 워크로드를 수동으로 구문 분석하는 어려움을 추상화할 수 있습니다.

AI 체인 2: 중앙 집중식 데이터

데이터는 일반적으로 데이터 웨어하우스라고 불리는 중앙 집중식 위치에 수집, 처리 및 저장되어 회사 업무에 대한 단일 진실 소스를 생성합니다. 단일 데이터 저장소를 유지하면 관리, 모니터링, 반복이 쉬워집니다. 이제 기업이 온라인 또는 클라우드 컴퓨팅 기능에 투자할 수 있는 옵션을 갖게 된 것처럼 최근 몇 년 동안 데이터를 분산하여 데이터 웨어하우스 유연성을 창출하려는 움직임이 있었습니다.

데이터 현지화 규칙으로 인해 분산된 기업의 데이터가 집계되지 않을 수 있습니다. 그리고 데이터 모델에 대한 엣지 사용 사례의 급속한 출현으로 인해 단일 데이터 웨어하우스의 개념은 더 이상 절대적이지 않습니다.

오늘날 대부분의 조직은 하이브리드 클라우드를 실행하고 있으므로 데이터를 하나의 특정 위치에 연결해야 하는 시대는 지났습니다. 기업이 계속해서 하이브리드 클라우드를 활용하는 것을 보면 엣지에 모델을 배포하는 유연성을 포함하여 하이브리드 클라우드의 모든 이점을 얻을 수 있습니다.

AI 체인 3: 훈련 데이터

유용한 데이터의 부족은 항상 인공지능 확산에 큰 장애물이었습니다. 기술적으로 우리는 데이터에 둘러싸여 있지만 데이터를 수집하고 저장하는 데는 시간이 많이 걸리고 지루하며 비용이 많이 들 수 있습니다. 편견의 문제도 있습니다. AI 모델을 개발하고 배포할 때 생성되는 통찰력이 가치 있고 해를 끼치지 않도록 균형을 이루고 편견이 없어야 합니다. 그러나 현실 세계가 편향되어 있는 것처럼 데이터도 편향되어 있습니다. 모델 사용을 확장하려면 많은 양의 데이터가 필요하고 데이터 편향을 수정하려는 노력이 필요합니다.

이러한 과제를 극복하기 위해 기업은 합성 데이터로 눈을 돌리고 있습니다. 실제로 합성 데이터가 증가하고 있습니다. Gartner는 2024년까지 AI 애플리케이션 데이터의 60%가 합성 데이터가 될 것으로 추정합니다. 데이터 과학자에게 데이터의 성격(실제 또는 합성)은 중요하지 않습니다. 중요한 것은 데이터의 품질입니다. 합성 데이터는 잠재적인 편견을 제거합니다. 또한 확장이 쉽고 구매 비용도 저렴합니다. 또한 합성 데이터는 기업에 사전 레이블이 지정된 데이터 옵션을 제공하여 모델 학습에 사용되는 공급원료를 생산하고 생성하는 데 필요한 시간과 리소스를 크게 줄여줍니다.

인공 지능의 부상

AI가 데이터 품질, 계산 및 위치의 제약에서 해방됨에 따라 일상 생활과 관련된 더 많은 사용 사례와 더 정확한 모델이 등장할 것입니다. 이미 AI를 사용하여 비즈니스 프로세스를 최적화하는 선도적인 조직을 보고 있지만, 이를 따라잡기 위한 조치를 취하지 않는 조직은 뚜렷한 경쟁 우위를 점하게 될 것입니다.

AI의 모든 이점을 얻으려면 구현이 하향식으로 이루어져야 합니다. 데이터 과학자가 모델 개발 및 배포라는 힘든 작업을 수행하는 동안 경영진은 AI를 비즈니스 전략에 가장 잘 통합하기 위해 개념에 대한 교육도 받아야 합니다. AI 기술과 그 잠재력을 이해하는 경영진은 AI와 비즈니스에 더 나은 전략적 투자를 할 수 있습니다.

반대로, AI가 비즈니스 목표를 얼마나 효과적으로 지원할 수 있는지 모르면 특정 애플리케이션에 돈을 투자하고 AI와 AI를 활용하는 새로운 연구 프로젝트가 결실을 맺기를 바랄 수도 있습니다. 이는 최적이 아닌 상향식 접근 방식입니다. 대신 경영진은 데이터 과학 실무자 및 직원 리더와 협력하여 이러한 기술을 정규 비즈니스 계획에 가장 잘 통합하는 방법을 배워야 합니다.

2023년에는 AI의 속박이 점차 완화될 것으로 예상됩니다(완전히 깨지지는 않더라도). 따라서 기업은 세상을 더 나은 곳으로 만들 수 있는 솔루션에 투자하여 AI의 잠재력을 최대한 활용하도록 도울 때입니다. , 이는 이러한 기업이 오늘날의 디지털 경제에서 경쟁력을 유지하는 데 도움이 됩니다.

위 내용은 2023년 전망: 디지털 미래는 인공지능의 족쇄를 푸는 데 달려 있다의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

AI와 같은 시장을 개척하는 GlobalFoundries는 Tagore Technology의 질화 갈륨 기술 및 관련 팀을 인수합니다. AI와 같은 시장을 개척하는 GlobalFoundries는 Tagore Technology의 질화 갈륨 기술 및 관련 팀을 인수합니다. Jul 15, 2024 pm 12:21 PM

7월 5일 이 웹사이트의 소식에 따르면 글로벌파운드리는 올해 7월 1일 보도자료를 통해 타고르 테크놀로지(Tagore Technology)의 전력질화갈륨(GaN) 기술 및 지적재산권 포트폴리오 인수를 발표하고 자동차와 인터넷 시장 점유율 확대를 희망하고 있다고 밝혔다. 더 높은 효율성과 더 나은 성능을 탐구하기 위한 사물 및 인공 지능 데이터 센터 응용 분야입니다. 생성 AI와 같은 기술이 디지털 세계에서 계속 발전함에 따라 질화갈륨(GaN)은 특히 데이터 센터에서 지속 가능하고 효율적인 전력 관리를 위한 핵심 솔루션이 되었습니다. 이 웹사이트는 이번 인수 기간 동안 Tagore Technology의 엔지니어링 팀이 GLOBALFOUNDRIES에 합류하여 질화갈륨 기술을 더욱 개발할 것이라는 공식 발표를 인용했습니다. G

See all articles