목차
深入理解 Python 虚拟机:集合(set)的实现原理及源码剖析
数据结构介绍
创建集合对象
往集合当中加入数据
哈希表数组扩容
从集合当中删除元素 pop
백엔드 개발 파이썬 튜토리얼 Python 컬렉션 세트 구현의 원칙은 무엇입니까?

Python 컬렉션 세트 구현의 원칙은 무엇입니까?

Apr 20, 2023 pm 07:37 PM
python set

深入理解 Python 虚拟机:集合(set)的实现原理及源码剖析

数据结构介绍

typedef struct {
    PyObject_HEAD
    Py_ssize_t fill;            /* Number active and dummy entries*/
    Py_ssize_t used;            /* Number active entries */
    /* The table contains mask + 1 slots, and that's a power of 2.
     * We store the mask instead of the size because the mask is more
     * frequently needed.
     */
    Py_ssize_t mask;
    /* The table points to a fixed-size smalltable for small tables
     * or to additional malloc'ed memory for bigger tables.
     * The table pointer is never NULL which saves us from repeated
     * runtime null-tests.
     */
    setentry *table;
    Py_hash_t hash;             /* Only used by frozenset objects */
    Py_ssize_t finger;          /* Search finger for pop() */
    setentry smalltable[PySet_MINSIZE]; // #define PySet_MINSIZE 8
    PyObject *weakreflist;      /* List of weak references */
} PySetObject;
typedef struct {
    PyObject *key;
    Py_hash_t hash;             /* Cached hash code of the key */
} setentry;
static PyObject _dummy_struct;
#define dummy (&_dummy_struct)
로그인 후 복사

上面的数据结果用图示如下图所示:

Python 컬렉션 세트 구현의 원칙은 무엇입니까?

上面各个字段的含义如下所示:

  • dummy entries :如果在哈希表当中的数组原来有一个数据,如果我们删除这个 entry 的时候,对应的位置就会被赋值成 dummy,与 dummy 有关的定义在上面的代码当中已经给出,dummy 对象的哈希值等于 -1。

  • 明白 dummy 的含义之后,fill 和 used 这两个字段的含义就比较容易理解了,used 就是数组当中真实有效的对象的个数,fill 还需要加上 dummy 对象的个数。

  • mask,数组的长度等于 2n2^n2n,mask 的值等于 2n−12^n - 12n−1 。

  • table,实际保存 entry 对象的数组。

  • hash,这个值对 frozenset 有用,保存计算出来的哈希值。如果你的数组很大的话,计算哈希值其实也是一个比较大的开销,因此可以将计算出来的哈希值保存下来,以便下一次求的时候可以将哈希值直接返回,这也印证了在 python 当中为什么只有 immutable 对象才能够放入到集合和字典当中,因为哈希值计算一次保存下来了,如果再加入对象对象的哈希值也会变化,这样做就会发生错误了。

  • finger,主要是用于记录下一个开始寻找被删除对象的下标。

  • smalltable,默认的小数组,cpython 设置的一半的集合对象不会超过这个大小(8),因此在申请一个集合对象的时候直接就申请了这个小数组的内存大小。

  • weakrelist,这个字段主要和垃圾回收有关,这里暂时不进行详细说明。

创建集合对象

首先先了解一下创建一个集合对象的过程,和前面其他的对象是一样的,首先先申请内存空间,然后进行相关的初始化操作。

这个函数有两个参数,使用第一个参数申请内存空间,然后后面一个参数如果不为 NULL 而且是一个可迭代对象的话,就将这里面的对象加入到集合当中。

static PyObject *
make_new_set(PyTypeObject *type, PyObject *iterable)
{
    PySetObject *so = NULL;
    /* create PySetObject structure */
    so = (PySetObject *)type->tp_alloc(type, 0);
    if (so == NULL)
        return NULL;
    // 集合当中目前没有任何对象,因此 fill 和 used 都是 0
    so->fill = 0;
    so->used = 0;
    // 初始化哈希表当中的数组长度为 PySet_MINSIZE 因此 mask = PySet_MINSIZE - 1
    so->mask = PySet_MINSIZE - 1;
    // 让 table 指向存储 entry 的数组
    so->table = so->smalltable;
    // 将哈希值设置成 -1 表示还没有进行计算
    so->hash = -1;
    so->finger = 0;
    so->weakreflist = NULL;
    // 如果 iterable 不等于 NULL 则需要将它指向的对象当中所有的元素加入到集合当中
    if (iterable != NULL) {
        // 调用函数 set_update_internal 将对象 iterable 当中的元素加入到集合当中
        if (set_update_internal(so, iterable)) {
            Py_DECREF(so);
            return NULL;
        }
    }
    return (PyObject *)so;
}
로그인 후 복사

往集合当中加入数据

首先我们先大致理清楚往集合当中插入数据的流程:

  • 首先根据对象的哈希值,计算需要将对象放在哪个位置,也就是对应数组的下标。

  • 查看对应下标的位置是否存在对象,如果不存在对象则将数据保存在对应下标的位置。

  • 如果对应的位置存在对象,则查看是否和当前要插入的对象相等,则返回。

  • 如果不相等,则使用类似于线性探测的方式去寻找下一个要插入的位置(具体的实现可以查看相关代码,具体的操作为线性探测法 + 开放地址法)。

static PyObject *
set_add(PySetObject *so, PyObject *key)
{
    if (set_add_key(so, key))
        return NULL;
    Py_RETURN_NONE;
}
static int
set_add_key(PySetObject *so, PyObject *key)
{
    setentry entry;
    Py_hash_t hash;
    // 这里就查看一下是否是字符串,如果是字符串直接拿到哈希值
    if (!PyUnicode_CheckExact(key) ||
        (hash = ((PyASCIIObject *) key)->hash) == -1) {
      	// 如果不是字符串则需要调用对象自己的哈希函数求得对应的哈希值
        hash = PyObject_Hash(key);
        if (hash == -1)
            return -1;
    }
    // 创建一个 entry 对象将这个对象加入到哈希表当中
    entry.key = key;
    entry.hash = hash;
    return set_add_entry(so, &entry);
}
static int
set_add_entry(PySetObject *so, setentry *entry)
{
    Py_ssize_t n_used;
    PyObject *key = entry->key;
    Py_hash_t hash = entry->hash;
    assert(so->fill <= so->mask);  /* at least one empty slot */
    n_used = so->used;
    Py_INCREF(key);
    // 调用函数 set_insert_key 将对象插入到数组当中
    if (set_insert_key(so, key, hash)) {
        Py_DECREF(key);
        return -1;
    }
    // 这里就是哈希表的核心的扩容机制
    if (!(so->used > n_used && so->fill*3 >= (so->mask+1)*2))
        return 0;
    // 这是扩容大小的逻辑
    return set_table_resize(so, so->used>50000 ? so->used*2 : so->used*4);
}
static int
set_insert_key(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *entry;
    // set_lookkey 这个函数便是插入的核心的逻辑的实现对应的实现函数在下方
    entry = set_lookkey(so, key, hash);
    if (entry == NULL)
        return -1;
    if (entry->key == NULL) {
        /* UNUSED */
        entry->key = key;
        entry->hash = hash;
        so->fill++;
        so->used++;
    } else if (entry->key == dummy) {
        /* DUMMY */
        entry->key = key;
        entry->hash = hash;
        so->used++;
    } else {
        /* ACTIVE */
        Py_DECREF(key);
    }
    return 0;
}
// 下面的代码就是在执行我们在前面所谈到的逻辑,直到找到相同的 key 或者空位置才退出 while 循环
static setentry *
set_lookkey(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *table = so->table;
    setentry *freeslot = NULL;
    setentry *entry;
    size_t perturb = hash;
    size_t mask = so->mask;
    size_t i = (size_t)hash & mask; /* Unsigned for defined overflow behavior */
    size_t j;
    int cmp;
    entry = &table[i];
    if (entry->key == NULL)
        return entry;
    while (1) {
        if (entry->hash == hash) {
            PyObject *startkey = entry->key;
            /* startkey cannot be a dummy because the dummy hash field is -1 */
            assert(startkey != dummy);
            if (startkey == key)
                return entry;
            if (PyUnicode_CheckExact(startkey)
                && PyUnicode_CheckExact(key)
                && unicode_eq(startkey, key))
                return entry;
            Py_INCREF(startkey);
            // returning -1 for error, 0 for false, 1 for true
            cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
            Py_DECREF(startkey);
            if (cmp < 0)                                          /* unlikely */
                return NULL;
            if (table != so->table || entry->key != startkey)     /* unlikely */
                return set_lookkey(so, key, hash);
            if (cmp > 0)                                          /* likely */
                return entry;
            mask = so->mask;                 /* help avoid a register spill */
        }
        if (entry->hash == -1 && freeslot == NULL)
            freeslot = entry;
        if (i + LINEAR_PROBES <= mask) {
            for (j = 0 ; j < LINEAR_PROBES ; j++) {
                entry++;
                if (entry->key == NULL)
                    goto found_null;
                if (entry->hash == hash) {
                    PyObject *startkey = entry->key;
                    assert(startkey != dummy);
                    if (startkey == key)
                        return entry;
                    if (PyUnicode_CheckExact(startkey)
                        && PyUnicode_CheckExact(key)
                        && unicode_eq(startkey, key))
                        return entry;
                    Py_INCREF(startkey);
                    // returning -1 for error, 0 for false, 1 for true
                    cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
                    Py_DECREF(startkey);
                    if (cmp < 0)
                        return NULL;
                    if (table != so->table || entry->key != startkey)
                        return set_lookkey(so, key, hash);
                    if (cmp > 0)
                        return entry;
                    mask = so->mask;
                }
                if (entry->hash == -1 && freeslot == NULL)
                    freeslot = entry;
            }
        }
        perturb >>= PERTURB_SHIFT; // #define PERTURB_SHIFT 5
        i = (i * 5 + 1 + perturb) & mask;
        entry = &table[i];
        if (entry->key == NULL)
            goto found_null;
    }
  found_null:
    return freeslot == NULL ? entry : freeslot;
}
로그인 후 복사

哈希表数组扩容

在 cpython 当中对于给哈希表数组扩容的操作,很多情况下都是用下面这行代码,从下面的代码来看对应扩容后数组的大小并不简单,当你的哈希表当中的元素个数大于 50000 时,新数组的大小是原数组的两倍,而如果你哈希表当中的元素个数小于等于 50000,那么久扩大为原来长度的四倍,这个主要是怕后面如果继续扩大四倍的话,可能会浪费很多内存空间。

set_table_resize(so, so->used>50000 ? so->used*2 : so->used*4);
로그인 후 복사

首先需要了解一下扩容机制,当哈希表需要扩容的时候,主要有以下两个步骤:

  • 创建新的数组,用于存储哈希表的键。

  • 遍历原来的哈希表,将原来哈希表当中的数据加入到新的申请的数组当中。

这里需要注意的是因为数组的长度发生了变化,但是 key 的哈希值却没有发生变化,因此在新的数组当中数据对应的下标位置也会发生变化,因此需重新将所有的对象重新进行一次插入操作,下面的整个操作相对来说比较简单,这里不再进行说明了。

static int
set_table_resize(PySetObject *so, Py_ssize_t minused)
{
    Py_ssize_t newsize;
    setentry *oldtable, *newtable, *entry;
    Py_ssize_t oldfill = so->fill;
    Py_ssize_t oldused = so->used;
    int is_oldtable_malloced;
    setentry small_copy[PySet_MINSIZE];
    assert(minused >= 0);
    /* Find the smallest table size > minused. */
    /* XXX speed-up with intrinsics */
    for (newsize = PySet_MINSIZE;
         newsize <= minused && newsize > 0;
         newsize <<= 1)
        ;
    if (newsize <= 0) {
        PyErr_NoMemory();
        return -1;
    }
    /* Get space for a new table. */
    oldtable = so->table;
    assert(oldtable != NULL);
    is_oldtable_malloced = oldtable != so->smalltable;
    if (newsize == PySet_MINSIZE) {
        /* A large table is shrinking, or we can&#39;t get any smaller. */
        newtable = so->smalltable;
        if (newtable == oldtable) {
            if (so->fill == so->used) {
                /* No dummies, so no point doing anything. */
                return 0;
            }
            /* We&#39;re not going to resize it, but rebuild the
               table anyway to purge old dummy entries.
               Subtle:  This is *necessary* if fill==size,
               as set_lookkey needs at least one virgin slot to
               terminate failing searches.  If fill < size, it&#39;s
               merely desirable, as dummies slow searches. */
            assert(so->fill > so->used);
            memcpy(small_copy, oldtable, sizeof(small_copy));
            oldtable = small_copy;
        }
    }
    else {
        newtable = PyMem_NEW(setentry, newsize);
        if (newtable == NULL) {
            PyErr_NoMemory();
            return -1;
        }
    }
    /* Make the set empty, using the new table. */
    assert(newtable != oldtable);
    memset(newtable, 0, sizeof(setentry) * newsize);
    so->fill = 0;
    so->used = 0;
    so->mask = newsize - 1;
    so->table = newtable;
    /* Copy the data over; this is refcount-neutral for active entries;
       dummy entries aren&#39;t copied over, of course */
    if (oldfill == oldused) {
        for (entry = oldtable; oldused > 0; entry++) {
            if (entry->key != NULL) {
                oldused--;
                set_insert_clean(so, entry->key, entry->hash);
            }
        }
    } else {
        for (entry = oldtable; oldused > 0; entry++) {
            if (entry->key != NULL && entry->key != dummy) {
                oldused--;
                set_insert_clean(so, entry->key, entry->hash);
            }
        }
    }
    if (is_oldtable_malloced)
        PyMem_DEL(oldtable);
    return 0;
}
static void
set_insert_clean(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *table = so->table;
    setentry *entry;
    size_t perturb = hash;
    size_t mask = (size_t)so->mask;
    size_t i = (size_t)hash & mask;
    size_t j;
    // #define LINEAR_PROBES 9
    while (1) {
        entry = &table[i];
        if (entry->key == NULL)
            goto found_null;
        if (i + LINEAR_PROBES <= mask) {
            for (j = 0; j < LINEAR_PROBES; j++) {
                entry++;
                if (entry->key == NULL)
                    goto found_null;
            }
        }
        perturb >>= PERTURB_SHIFT;
        i = (i * 5 + 1 + perturb) & mask;
    }
  found_null:
    entry->key = key;
    entry->hash = hash;
    so->fill++;
    so->used++;
}
로그인 후 복사

从集合当中删除元素 pop

从集合当中删除元素的代码如下所示:

static PyObject *
set_pop(PySetObject *so)
{
    /* Make sure the search finger is in bounds */
    Py_ssize_t i = so->finger & so->mask;
    setentry *entry;
    PyObject *key;
    assert (PyAnySet_Check(so));
    if (so->used == 0) {
        PyErr_SetString(PyExc_KeyError, "pop from an empty set");
        return NULL;
    }
    while ((entry = &so->table[i])->key == NULL || entry->key==dummy) {
        i++;
        if (i > so->mask)
            i = 0;
    }
    key = entry->key;
    entry->key = dummy;
    entry->hash = -1;
    so->used--;
    so->finger = i + 1;         /* next place to start */
    return key;
}
로그인 후 복사

上面的代码相对来说也比较清晰,从 finger 开始寻找存在的元素,并且删除他。我们在前面提到过,当一个元素被删除之后他会被赋值成 dummy 而且哈希值为 -1 。

위 내용은 Python 컬렉션 세트 구현의 원칙은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

hadidb : 파이썬의 가볍고 수평 확장 가능한 데이터베이스 hadidb : 파이썬의 가볍고 수평 확장 가능한 데이터베이스 Apr 08, 2025 pm 06:12 PM

HADIDB : 가볍고 높은 수준의 확장 가능한 Python 데이터베이스 HadIDB (HADIDB)는 파이썬으로 작성된 경량 데이터베이스이며 확장 수준이 높습니다. PIP 설치를 사용하여 HADIDB 설치 : PIPINSTALLHADIDB 사용자 관리 사용자 만들기 사용자 : createUser () 메소드를 작성하여 새 사용자를 만듭니다. Authentication () 메소드는 사용자의 신원을 인증합니다. Fromhadidb.operationimportuseruser_obj = user ( "admin", "admin") user_obj.

파이썬 : 기본 응용 프로그램 탐색 파이썬 : 기본 응용 프로그램 탐색 Apr 10, 2025 am 09:41 AM

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 ​​같은 작업에 적합합니다.

2 시간의 파이썬 계획 : 현실적인 접근 2 시간의 파이썬 계획 : 현실적인 접근 Apr 11, 2025 am 12:04 AM

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

MongoDB 데이터베이스 비밀번호를 보는 Navicat의 방법 MongoDB 데이터베이스 비밀번호를 보는 Navicat의 방법 Apr 08, 2025 pm 09:39 PM

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

Amazon Athena와 함께 AWS Glue Crawler를 사용하는 방법 Amazon Athena와 함께 AWS Glue Crawler를 사용하는 방법 Apr 09, 2025 pm 03:09 PM

데이터 전문가는 다양한 소스에서 많은 양의 데이터를 처리해야합니다. 이것은 데이터 관리 및 분석에 어려움을 겪을 수 있습니다. 다행히도 AWS Glue와 Amazon Athena의 두 가지 AWS 서비스가 도움이 될 수 있습니다.

고로드 애플리케이션의 MySQL 성능을 최적화하는 방법은 무엇입니까? 고로드 애플리케이션의 MySQL 성능을 최적화하는 방법은 무엇입니까? Apr 08, 2025 pm 06:03 PM

MySQL 데이터베이스 성능 최적화 안내서 리소스 집약적 응용 프로그램에서 MySQL 데이터베이스는 중요한 역할을 수행하며 대규모 트랜잭션 관리를 담당합니다. 그러나 응용 프로그램 규모가 확장됨에 따라 데이터베이스 성능 병목 현상은 종종 제약이됩니다. 이 기사는 일련의 효과적인 MySQL 성능 최적화 전략을 탐색하여 응용 프로그램이 고 부하에서 효율적이고 반응이 유지되도록합니다. 실제 사례를 결합하여 인덱싱, 쿼리 최적화, 데이터베이스 설계 및 캐싱과 같은 심층적 인 주요 기술을 설명합니다. 1. 데이터베이스 아키텍처 설계 및 최적화 된 데이터베이스 아키텍처는 MySQL 성능 최적화의 초석입니다. 몇 가지 핵심 원칙은 다음과 같습니다. 올바른 데이터 유형을 선택하고 요구 사항을 충족하는 가장 작은 데이터 유형을 선택하면 저장 공간을 절약 할 수있을뿐만 아니라 데이터 처리 속도를 향상시킬 수 있습니다.

Redis로 서버를 시작하는 방법 Redis로 서버를 시작하는 방법 Apr 10, 2025 pm 08:12 PM

Redis 서버를 시작하는 단계에는 다음이 포함됩니다. 운영 체제에 따라 Redis 설치. Redis-Server (Linux/MacOS) 또는 Redis-Server.exe (Windows)를 통해 Redis 서비스를 시작하십시오. Redis-Cli Ping (Linux/MacOS) 또는 Redis-Cli.exe Ping (Windows) 명령을 사용하여 서비스 상태를 확인하십시오. Redis-Cli, Python 또는 Node.js와 같은 Redis 클라이언트를 사용하여 서버에 액세스하십시오.

Redis 대기열을 읽는 방법 Redis 대기열을 읽는 방법 Apr 10, 2025 pm 10:12 PM

Redis의 대기열을 읽으려면 대기열 이름을 얻고 LPOP 명령을 사용하여 요소를 읽고 빈 큐를 처리해야합니다. 특정 단계는 다음과 같습니다. 대기열 이름 가져 오기 : "큐 :"와 같은 "대기열 : my-queue"의 접두사로 이름을 지정하십시오. LPOP 명령을 사용하십시오. 빈 대기열 처리 : 대기열이 비어 있으면 LPOP이 NIL을 반환하고 요소를 읽기 전에 대기열이 존재하는지 확인할 수 있습니다.

See all articles