목차
편향 평가
설명성
인간 증강
반복성
주요 사항
기술 주변기기 일체 포함 책임 있는 AI 배포 실행: 4가지 원칙

책임 있는 AI 배포 실행: 4가지 원칙

Apr 22, 2023 pm 08:28 PM
일체 포함 기계 학습 데이터 프라이버시

인공 지능(AI)은 모든 산업을 변화시키고 있으며 현재 조직의 1/3 이상이 AI를 광범위하게 또는 제한적으로 생산하고 있습니다. 그러나 다른 기술과 마찬가지로 AI에는 비윤리적 편견 확산, 책임성 희석, 데이터 프라이버시 침해 등 심각한 경제적, 사회적 위험이 따릅니다.

책임 있는 AI 배포 실행: 4가지 원칙

이러한 위험을 방지하고 AI를 책임감 있게 배포하기 위해 규제 정책과 업계 모두 이 기술을 다루는 실무자와 사용자를 위한 프로세스와 표준을 개발할 책임이 있습니다. 이를 위해 Ethical AI and ML Institute의 팀은 실무자가 이러한 원칙이 생산 AI 및 기계 학습 시스템을 둘러싼 인프라 및 프로세스에 설계에 내장되도록 역량을 강화하기 위해 책임 있는 AI 원칙을 통합했습니다.

이 기사에서는 편향 평가, 설명 가능성, 인위적 향상 및 반복성이라는 8가지 원칙 중 4가지 원칙을 자세히 설명합니다.

편향 평가

어떤 의미에서 AI 모델은 관련 답변을 다르게 처리하도록 설계되었기 때문에 본질적으로 편향되어 있습니다. 지능의 핵심은 우리가 세상에서 보는 패턴을 인식하고 이에 따라 행동하는 능력이기 때문입니다. AI 모델을 개발할 때 우리는 이러한 정확한 능력을 복제하고 AI가 입력된 데이터에서 패턴을 발견하고 그에 따라 편견을 개발하도록 장려하려고 노력합니다. 예를 들어, 단백질 화학 데이터를 연구하는 모델은 구조가 특정 방식으로 접힐 수 있는 단백질에 대한 내재적 편견을 가지게 되어 어떤 단백질이 의학 관련 사용 사례에 유용한지 발견합니다.

그러므로 AI 편견에 반대할 때는 조심해야 합니다. AI의 편견이라는 주제에 관해 우리는 일반적으로 인종, 성별, 출신 국가와 같은 보호된 특성에 기반한 편견과 같이 실제로 바람직하지 않거나 불합리한 편견을 말합니다.

그런데 AI 모델은 왜 비윤리적인 편견을 만들어내는 걸까요? 대답은 입력된 데이터에 따라 다릅니다. 모델은 궁극적으로 배포 전에 사용된 훈련 데이터에 존재하는 편향을 반영하므로, 훈련 데이터가 대표성이 없거나 기존 편향을 통합하는 경우 결과 모델은 결국 이를 반영하게 됩니다. 컴퓨터 과학에서 말하는 것처럼 "쓰레기가 들어오면 쓰레기가 나옵니다."

또한 팀은 AI 훈련 데이터의 효율성, 모델 자체의 훈련 및 평가, 모델 자체의 운영 수명주기와 관련된 바람직하지 않은 편견을 적절하게 식별하기 위한 일련의 프로세스와 절차를 만들어야 합니다. AI를 배포하는 경우 살펴볼 좋은 예는 Ethical AI and Machine Learning Institute의 eXplainable AI 프레임워크입니다. 이에 대해서는 다음에 자세히 설명하겠습니다.

설명성

AI 모델이 목적에 부합하는지 확인하려면 관련 분야 전문가의 참여도 중요합니다. 이러한 사람들은 팀이 AI 모델이 통계 및 정확성 기반 성능 지표뿐만 아니라 올바른 성능 지표를 사용하는지 확인하는 데 도움을 줄 수 있습니다. 도메인 전문가에는 기술 전문가뿐만 아니라 해당 사용 사례와 관련된 사회 과학 및 인문학 전문가도 포함된다는 점을 강조할 가치가 있습니다.

그러나 효과적이려면 관련 도메인 전문가가 모델의 예측을 해석할 수 있는지 확인하는 것도 중요합니다. 그러나 고급 AI 모델은 최첨단 딥러닝 기술을 사용하는 경우가 많으며, 이는 단순히 특정 예측이 이루어지는 이유를 설명하지 못할 수도 있습니다.

이러한 어려움을 극복하기 위해 조직은 AI 모델의 예측을 해독하는 데 사용할 수 있는 다양한 기술과 도구를 활용하여 기계 학습 해석성을 달성하는 경향이 있습니다.

인공지능 모델의 운용화는 해석 가능성 다음입니다. 관련 이해관계자들의 조사와 모니터링이 필요한 시점이다. 이러한 AI 모델의 수명 주기는 프로덕션에 적절하게 배포된 후에만 시작됩니다. 일단 실행되면 모델은 개념적 표류이든 모델이 실행되는 환경의 변화이든 상관없이 외부 압력으로 인해 성능 저하를 겪게 됩니다.

인간 증강

AI를 배포할 때는 먼저 부정적인 결과의 위험을 개략적으로 설명하는 것을 포함하여 원래의 자동화되지 않은 프로세스의 현재 요구 사항을 평가하는 것이 중요합니다. 이를 통해 프로세스를 더 깊이 이해할 수 있으며 위험을 줄이기 위해 사람의 개입이 필요할 수 있는 영역을 식별하는 데 도움이 됩니다.

예를 들어, 프로 운동선수에게 식사 계획을 추천하는 AI는 은행의 백엔드 대출 승인 프로세스를 자동화하는 AI 모델보다 영향이 큰 위험 요소가 훨씬 적습니다. 이는 전자의 경우 인간 개입이 덜 필요함을 시사합니다. 후자보다. 팀이 AI 워크플로에서 잠재적인 위험 지점을 식별하면 HITL(인간-기계 루프 검토 프로세스) 구현을 고려할 수 있습니다.

HITL은 프로세스를 자동화한 후에도 결과를 확인하기 위해 사람의 개입이 필요한 다양한 터치 포인트가 여전히 존재하도록 보장하여 필요한 경우 더 쉽게 수정하거나 결정을 뒤집을 수 있도록 합니다. 이 프로세스에는 AI 모델이 내린 결정을 평가하고 모범 사례를 준수하는지 확인하기 위한 기술 전문가 및 업계 전문가(예: 은행 대출 인수자 또는 식사 계획 영양사)로 구성된 팀이 포함될 수 있습니다.

반복성

재현성은 팀이 데이터 포인트에 대해 알고리즘을 반복적으로 실행하고 매번 동일한 결과를 얻을 수 있는 능력입니다. 이는 책임 있는 AI의 핵심 구성 요소입니다. 모델의 이전 예측이 이후 단계에서 다시 실행될 때 다시 게시되도록 하는 것이 중요하기 때문입니다.

자연적으로 재현성은 달성하기 어렵습니다. 주로 인공 지능 시스템의 본질적인 어려움으로 인해 발생합니다. AI 모델의 출력은 다음과 같은 다양한 상황적 상황에 따라 달라질 수 있기 때문입니다.

  • AI 간섭을 계산하는 데 사용되는 코드
  • 사용된 데이터에서 학습된 가중치
  • 코드가 실행되는 환경 실행되면 인프라를 구성하고
  • 모델에 제공되는 입력 및 입력 구조

를 구성하는 것은 복잡한 문제입니다. 특히 AI 모델이 대규모로 배포되고 수많은 다른 도구와 프레임워크를 고려해야 하는 경우에는 더욱 그렇습니다. 이를 위해 팀은 위의 상황을 제어하는 ​​데 도움이 되는 강력한 사례를 개발하고 재현성을 향상시키는 데 도움이 되는 도구를 구현해야 합니다.

주요 사항

위의 높은 수준의 원칙을 통해 업계에서는 책임 있는 AI 사용을 위한 모범 사례를 준수할 수 있습니다. 이러한 원칙을 채택하는 것은 AI가 경제적 잠재력을 최대한 발휘하고 취약 계층의 역량을 약화시키거나 비윤리적 편견을 강화하거나 책임을 약화시키지 않도록 보장하는 데 중요합니다. 대신, 성장, 생산성, 효율성, 혁신 및 모두를 위한 더 나은 이익을 추구하는 데 사용할 수 있는 기술이 될 수 있습니다.

위 내용은 책임 있는 AI 배포 실행: 4가지 원칙의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. Aug 01, 2024 pm 09:40 PM

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

See all articles