Java에서 무방향 그래프를 구현하는 방법은 무엇입니까?
기본 개념
그래프 정의
A 그래프는 VV A 바이너리의 순서 없는 요소 쌍으로 구성된 점 집합 V={vi}과 집합 E={ek}으로 구성됩니다. 그룹, G=(V,E)로 기록되며, V의 vi 요소를 정점이라고 하며 E의 요소 ek를 모서리라고 합니다.
V의 두 점 u, v에 대해 모서리(u, v)가 E에 속하면 두 점 u와 v는 인접하다고 하며 u와 v를 모서리(u, v)의 끝점이라고 합니다. V).
m(G)=|E|를 사용하여 그래프 G의 모서리 수를 나타내고 n(G)=|V|를 사용하여 그래프 G의 정점 수를 나타낼 수 있습니다.
무방향 그래프의 정의
E에 있는 임의의 간선(vi, vj)에 대해 간선(vi, vj)의 끝점이 순서가 없으면 무방향 간선입니다. 이때 그래프 G를 무방향 간선이라고 합니다. 그래프. 무방향 그래프는 가장 단순한 그래프 모델입니다. 다음 그림은 동일한 무방향 그래프를 보여줍니다. 정점은 원으로 표시되고 모서리는 화살표 없이 정점 간의 연결입니다("알고리즘 4판"의 그림). 무방향 그래프 API
무방향 그래프의 경우 정점 수, 가장자리 수, 각 정점의 인접한 정점 및 가장자리 추가 작업에 관심이 있으므로 인터페이스는 다음과 같습니다.
package com.zhiyiyo.graph; /** * 无向图 */ public interface Graph { /** * 返回图中的顶点数 */ int V(); /** * 返回图中的边数 */ int E(); /** * 向图中添加一条边 * @param v 顶点 v * @param w 顶点 w */ void addEdge(int v, int w); /** * 返回所有相邻顶点 * @param v 顶点 v * @return 所有相邻顶点 */ Iterable<Integer> adj(int v); }
ij
)n×n
을 구성합니다. 여기서:이 호출됩니다. 행렬 A는 그래프 G의 인접 행렬입니다.
A[i][j] = true
일 때 2차원 부울 배열 A
를 사용하여 인접 행렬을 구현할 수 있다는 것을 정의에서 볼 수 있습니다. , 이는 정점 i
와 j
가 인접해 있음을 나타냅니다.

A
来实现邻接矩阵,当 A[i][j] = true
时说明顶点 i
和 j
相邻。
对于 n个顶点的图 G,邻接矩阵需要消耗的空间为 n2个布尔值的大小,对于稀疏图来说会造成很大的浪费,当顶点数很大时所消耗的空间会是个天文数字。同时当图比较特殊,存在自环以及平行边时,邻接矩阵的表示方式是无能为力的。《算法》中给出了存在这两种情况的图:
边的数组
对于无向图,我们可以实现一个类 Edge
,里面只用两个实例变量用来存储两个顶点 u和 v,接着在一个数组里面保存所有 Edge
Array of edge
무방향 그래프의 경우 두 개의 인스턴스 변수만 사용하여 두 개의 정점 u와 v를 저장한 다음 모두 저장하는 Edge
클래스를 구현할 수 있습니다. 배열의 Edge
. 여기에는 큰 문제가 있습니다. 즉, 정점 v의 모든 인접한 정점을 얻으려면 전체 배열을 순회해야 합니다. 인접한 정점을 얻는 것은 매우 일반적인 작업이므로 시간 복잡도는 O(|E|)입니다. , 이런 표현도 안 돼요.
인접 목록 배열
꼭지점을 값 범위 0∼|V|−1의 정수로 표현하면 길이가 |V|인 배열의 인덱스를 사용하여 각 꼭지점을 나타낼 수 있습니다. 배열 요소는 인덱스로 표시되는 꼭지점에 인접한 다른 꼭지점을 보유하는 연결 목록으로 설정됩니다. 그림 1의 무방향 그래프는 아래 그림과 같은 인접 리스트 배열로 표현할 수 있다.
인접 리스트를 이용하여 무방향 그래프를 구현하는 코드는 다음과 같다. 인접 리스트의 각 연결 리스트는 다음과 같다. 배열은 정점에 인접한 정점을 저장하므로 그래프에 가장자리를 추가할 때 배열의 두 연결 목록에 노드를 추가해야 합니다.
package com.zhiyiyo.graph; import com.zhiyiyo.collection.stack.LinkStack; /** * 使用邻接表实现的无向图 */ public class LinkGraph implements Graph { private final int V; private int E; private LinkStack<Integer>[] adj; public LinkGraph(int V) { this.V = V; adj = (LinkStack<Integer>[]) new LinkStack[V]; for (int i = 0; i < V; i++) { adj[i] = new LinkStack<>(); } } @Override public int V() { return V; } @Override public int E() { return E; } @Override public void addEdge(int v, int w) { adj[v].push(w); adj[w].push(v); E++; } @Override public Iterable<Integer> adj(int v) { return adj[v]; } }
여기서 사용된 스택 코드는 스택의 구현입니다. 이 블로그의 일부가 아닙니다. 핵심 사항이므로 여기서는 너무 많이 설명하지 않겠습니다.
package com.zhiyiyo.collection.stack; import java.util.EmptyStackException; import java.util.Iterator; /** * 使用链表实现的堆栈 */ public class LinkStack<T> { private int N; private Node first; public void push(T item) { first = new Node(item, first); N++; } public T pop() throws EmptyStackException { if (N == 0) { throw new EmptyStackException(); } T item = first.item; first = first.next; N--; return item; } public int size() { return N; } public boolean isEmpty() { return N == 0; } public Iterator<T> iterator() { return new ReverseIterator(); } private class Node { T item; Node next; public Node() { } public Node(T item, Node next) { this.item = item; this.next = next; } } private class ReverseIterator implements Iterator<T> { private Node node = first; @Override public boolean hasNext() { return node != null; } @Override public T next() { T item = node.item; node = node.next; return item; } @Override public void remove() { } } }
Traversal of undirected graph
다음 그림이 주어지면 이제 각 정점에서 정점 0까지의 경로를 찾아야 합니다. 방법 이것을 달성? 또는 간단히 말해서 정점 0과 4가 주어지면 정점 0에서 시작하여 정점 4에 도달할 수 있는지 여부를 결정해야 합니다. 이를 달성하는 방법은 무엇입니까? 이를 위해서는 깊이 우선 검색과 너비 우선 검색이라는 두 가지 그래프 순회 방법을 사용해야 합니다.
package com.zhiyiyo.graph; public interface Search { /** * 起点 s 和 顶点 v 之间是否连通 * @param v 顶点 v * @return 是否连通 */ boolean connected(int v); /** * 返回与顶点 s 相连通的顶点个数(包括 s) */ int count(); /** * 是否存在从起点 s 到顶点 v 的路径 * @param v 顶点 v * @return 是否存在路径 */ boolean hasPathTo(int v); /** * 从起点 s 到顶点 v 的路径,不存在则返回 null * @param v 顶点 v * @return 路径 */ Iterable<Integer> pathTo(int v); }
深度优先搜索
深度优先搜索的思想类似树的先序遍历。我们从顶点 0 开始,将它的相邻顶点 2、1、5 加到栈中。接着弹出栈顶的顶点 2,将它相邻的顶点 0、1、3、4 添加到栈中,但是写到这你就会发现一个问题:顶点 0 和 1明明已经在栈中了,如果还把他们加到栈中,那这个栈岂不是永远不会变回空。所以还需要维护一个数组 boolean[] marked
,当我们将一个顶点 i
添加到栈中时,就将 marked[i]
置为 true
,这样下次要想将顶点 i
加入栈中时,就得先检查一个 marked[i]
是否为 true
,如果为 true
就不用再添加了。重复栈顶节点的弹出和节点相邻节点的入栈操作,直到栈为空,我们就完成了顶点 0 可达的所有顶点的遍历。
为了记录每个顶点到顶点 0 的路径,我们还需要一个数组 int[] edgeTo
。每当我们访问到顶点 u
并将其一个相邻顶点 i
压入栈中时,就将 edgeTo[i]
设置为 u
,说明要想从顶点i
到达顶点 0,需要先回退顶点 u
,接着再从顶点 edgeTo[u]
处获取下一步要回退的顶点直至找到顶点 0。
package com.zhiyiyo.graph; import com.zhiyiyo.collection.stack.LinkStack; import com.zhiyiyo.collection.stack.Stack; public class DepthFirstSearch implements Search { private boolean[] marked; private int[] edgeTo; private Graph graph; private int s; private int N; public DepthFirstSearch(Graph graph, int s) { this.graph = graph; this.s = s; marked = new boolean[graph.V()]; edgeTo = new int[graph.V()]; dfs(); } /** * 递归实现的深度优先搜索 * * @param v 顶点 v */ private void dfs(int v) { marked[v] = true; N++; for (int i : graph.adj(v)) { if (!marked[i]) { edgeTo[i] = v; dfs(i); } } } /** * 堆栈实现的深度优先搜索 */ private void dfs() { Stack<Integer> vertexes = new LinkStack<>(); vertexes.push(s); marked[s] = true; while (!vertexes.isEmpty()) { Integer v = vertexes.pop(); N++; // 将所有相邻顶点加到堆栈中 for (Integer i : graph.adj(v)) { if (!marked[i]) { edgeTo[i] = v; marked[i] = true; vertexes.push(i); } } } } @Override public boolean connected(int v) { return marked[v]; } @Override public int count() { return N; } @Override public boolean hasPathTo(int v) { return connected(v); } @Override public Iterable<Integer> pathTo(int v) { if (!hasPathTo(v)) return null; Stack<Integer> path = new LinkStack<>(); int vertex = v; while (vertex != s) { path.push(vertex); vertex = edgeTo[vertex]; } path.push(s); return path; } }
广度优先搜索
广度优先搜索的思想类似树的层序遍历。与深度优先搜索不同,从顶点 0 出发,广度优先搜索会先处理完所有与顶点 0 相邻的顶点 2、1、5 后,才会接着处理顶点 2、1、5 的相邻顶点。这个搜索过程就是一圈一圈往外扩展、越走越远的过程,所以可以用来获取顶点 0 到其他节点的最短路径。只要将深度优先搜索中的堆换成队列,就能实现广度优先搜索:
package com.zhiyiyo.graph; import com.zhiyiyo.collection.queue.LinkQueue; public class BreadthFirstSearch implements Search { private boolean[] marked; private int[] edgeTo; private Graph graph; private int s; private int N; public BreadthFirstSearch(Graph graph, int s) { this.graph = graph; this.s = s; marked = new boolean[graph.V()]; edgeTo = new int[graph.V()]; bfs(); } private void bfs() { LinkQueue<Integer> queue = new LinkQueue<>(); marked[s] = true; queue.enqueue(s); while (!queue.isEmpty()) { int v = queue.dequeue(); N++; for (Integer i : graph.adj(v)) { if (!marked[i]) { edgeTo[i] = v; marked[i] = true; queue.enqueue(i); } } } } }
队列的实现代码如下:
package com.zhiyiyo.collection.queue; import java.util.EmptyStackException; public class LinkQueue<T> { private int N; private Node first; private Node last; public void enqueue(T item) { Node node = new Node(item, null); if (++N == 1) { first = node; } else { last.next = node; } last = node; } public T dequeue() throws EmptyStackException { if (N == 0) { throw new EmptyStackException(); } T item = first.item; first = first.next; if (--N == 0) { last = null; } return item; } public int size() { return N; } public boolean isEmpty() { return N == 0; } private class Node { T item; Node next; public Node() { } public Node(T item, Node next) { this.item = item; this.next = next; } } }
위 내용은 Java에서 무방향 그래프를 구현하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

PHP는 서버 측에서 널리 사용되는 스크립팅 언어이며 특히 웹 개발에 적합합니다. 1.PHP는 HTML을 포함하고 HTTP 요청 및 응답을 처리 할 수 있으며 다양한 데이터베이스를 지원할 수 있습니다. 2.PHP는 강력한 커뮤니티 지원 및 오픈 소스 리소스를 통해 동적 웹 컨텐츠, 프로세스 양식 데이터, 액세스 데이터베이스 등을 생성하는 데 사용됩니다. 3. PHP는 해석 된 언어이며, 실행 프로세스에는 어휘 분석, 문법 분석, 편집 및 실행이 포함됩니다. 4. PHP는 사용자 등록 시스템과 같은 고급 응용 프로그램을 위해 MySQL과 결합 할 수 있습니다. 5. PHP를 디버깅 할 때 error_reporting () 및 var_dump ()와 같은 함수를 사용할 수 있습니다. 6. 캐싱 메커니즘을 사용하여 PHP 코드를 최적화하고 데이터베이스 쿼리를 최적화하며 내장 기능을 사용하십시오. 7

PHP와 Python은 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1.PHP는 간단한 구문과 높은 실행 효율로 웹 개발에 적합합니다. 2. Python은 간결한 구문 및 풍부한 라이브러리를 갖춘 데이터 과학 및 기계 학습에 적합합니다.

PHP는 특히 빠른 개발 및 동적 컨텐츠를 처리하는 데 웹 개발에 적합하지만 데이터 과학 및 엔터프라이즈 수준의 애플리케이션에는 적합하지 않습니다. Python과 비교할 때 PHP는 웹 개발에 더 많은 장점이 있지만 데이터 과학 분야에서는 Python만큼 좋지 않습니다. Java와 비교할 때 PHP는 엔터프라이즈 레벨 애플리케이션에서 더 나빠지지만 웹 개발에서는 더 유연합니다. JavaScript와 비교할 때 PHP는 백엔드 개발에서 더 간결하지만 프론트 엔드 개발에서는 JavaScript만큼 좋지 않습니다.

PHP와 Python은 각각 고유 한 장점이 있으며 다양한 시나리오에 적합합니다. 1.PHP는 웹 개발에 적합하며 내장 웹 서버 및 풍부한 기능 라이브러리를 제공합니다. 2. Python은 간결한 구문과 강력한 표준 라이브러리가있는 데이터 과학 및 기계 학습에 적합합니다. 선택할 때 프로젝트 요구 사항에 따라 결정해야합니다.

phphassignificallyimpactedwebdevelopmentandextendsbeyondit

캡슐은 3 차원 기하학적 그림이며, 양쪽 끝에 실린더와 반구로 구성됩니다. 캡슐의 부피는 실린더의 부피와 양쪽 끝에 반구의 부피를 첨가하여 계산할 수 있습니다. 이 튜토리얼은 다른 방법을 사용하여 Java에서 주어진 캡슐의 부피를 계산하는 방법에 대해 논의합니다. 캡슐 볼륨 공식 캡슐 볼륨에 대한 공식은 다음과 같습니다. 캡슐 부피 = 원통형 볼륨 2 반구 볼륨 안에, R : 반구의 반경. H : 실린더의 높이 (반구 제외). 예 1 입력하다 반경 = 5 단위 높이 = 10 단위 산출 볼륨 = 1570.8 입방 단위 설명하다 공식을 사용하여 볼륨 계산 : 부피 = π × r2 × h (4

PHP가 많은 웹 사이트에서 선호되는 기술 스택 인 이유에는 사용 편의성, 강력한 커뮤니티 지원 및 광범위한 사용이 포함됩니다. 1) 배우고 사용하기 쉽고 초보자에게 적합합니다. 2) 거대한 개발자 커뮤니티와 풍부한 자원이 있습니다. 3) WordPress, Drupal 및 기타 플랫폼에서 널리 사용됩니다. 4) 웹 서버와 밀접하게 통합하여 개발 배포를 단순화합니다.
