'Stable Diffusion 기술을 이용한 영상 재현, CVPR 학회에서 관련 연구 채택'
인공지능이 당신의 상상을 해석하고, 당신 마음속의 이미지를 현실로 바꿀 수 있다면 어떨까요?
약간 사이버펑크처럼 들리긴 하지만요. 그런데 최근 발표된 논문이 AI계에 파문을 일으켰다.
본 논문에서는 최근 매우 인기를 끌고 있는 Stable Diffusion을 이용하여 뇌 활동의 고해상도, 고정밀 영상을 재구성할 수 있음을 발견했습니다. 저자는 이전 연구와 달리 이러한 이미지를 생성하기 위해 인공 지능 모델을 훈련하거나 미세 조정할 필요가 없다고 썼습니다.
- 문서 주소: https://www.biorxiv.org/content/10.1101/2022.11.18.517004v2.full.pdf
- 웹페이지 주소: https: //sites.google.com/view/stablediffusion-with-brain/
어떻게 하나요?
이 연구에서 저자는 Stable Diffusion을 사용하여 기능적 자기공명영상(fMRI)을 통해 얻은 인간의 뇌 활동 영상을 재구성했습니다. 저자는 또한 뇌 관련 기능의 다양한 구성 요소(예: 이미지 Z의 잠재 벡터 등)를 연구하여 암시적 확산 모델의 메커니즘을 이해하는 것도 도움이 된다고 말했습니다.
이 논문은 CVPR 2023에서도 승인되었습니다.
이 연구의 주요 기여는 다음과 같습니다.
- 간단한 프레임워크가 복잡한 훈련이나 미세 조정 없이 높은 의미 충실도로 뇌 활동의 고해상도(512×512) 이미지를 재구성할 수 있음을 입증했습니다. 모델은 아래 그림과 같습니다.
- 특정 구성 요소를 서로 다른 뇌 영역에 매핑함으로써 이 연구는 신경과학 관점에서 LDM의 각 구성 요소를 정량적으로 설명합니다. LDM이 구현하는 텍스트-이미지 변환 프로세스는 원본 이미지의 모양을 유지하면서 조건부 텍스트로 표현된 의미 정보를 결합합니다.
- 방법론 개요
그림 2(가운데)는 본 연구의 디코딩 분석에 대한 개략도입니다. 우리는 각각 초기(파란색) 및 고차(노란색) 시각 피질 내의 fMRI 신호에서 제시된 이미지(z) 및 관련 텍스트 c의 기본 표현을 디코딩했습니다. 이러한 잠재 표현은 재구성된 이미지 X_zc를 생성하기 위한 입력으로 사용됩니다.
그림 2(하단)는 본 연구의 코딩 분석에 대한 개략도이다. z, c 및 z_c를 포함하여 LDM의 다양한 구성 요소에서 fMRI 신호를 예측하기 위해 인코딩 모델을 구축했습니다.
여기서 Stable Diffusion에 대해 너무 많이 소개하지는 않겠습니다. 이미 많은 분들이 알고 계시리라 믿습니다.
결과
이 연구의 시각적 재구성 결과를 살펴보겠습니다.디코딩
아래 그림 3은 피사체(subj01)의 시각적 재구성 결과를 보여줍니다. 각 테스트 이미지에 대해 5개의 이미지를 생성하고 PSM이 가장 높은 이미지를 선택했습니다. 한편, z만을 사용하여 재구성된 이미지는 원본 이미지와 시각적으로 일치하지만 의미적 내용을 포착하는 데는 실패합니다. 반면, c만으로 재구성된 이미지는 의미 충실도가 높은 이미지를 생성하지만 시각적으로 일관성이 없습니다. 마지막으로 z_c 재구성 이미지를 사용하면 의미 충실도가 높은 고해상도 이미지를 생성할 수 있습니다.
그림 4는 모든 테스터가 동일한 이미지를 재구성한 것을 보여줍니다(모든 이미지는 z_c로 생성됨). 전반적으로 테스터 전체의 재구성 품질은 안정적이고 정확했습니다.
그림 5는 정량적 평가 결과입니다. 그림 6은 세 가지 유형의 LDM에 대한 인코딩 모델을 보여줍니다. 관련 잠상 예측 정확도: z, 원본 이미지의 잠상, c, 이미지 텍스트 주석의 잠상 및 z_c, c를 사용한 교차 주의 역확산 프로세스 후의 시끄러운 잠상 표현. .
반복적인 노이즈 제거 프로세스 중에 추가된 노이즈의 기본 표현은 어떻게 변경되나요? 그림 8은 잡음 제거 과정의 초기 단계에서 z-신호가 fMRI 신호 예측을 지배한다는 것을 보여줍니다. 잡음 제거 프로세스의 중간 단계에서 z_c는 상위 시각 피질 내 활동을 z보다 훨씬 더 잘 예측하며, 이는 대부분의 의미 체계 콘텐츠가 이 단계에서 나타난다는 것을 나타냅니다. 결과는 LDM이 노이즈로부터 이미지를 개선하고 생성하는 방법을 보여줍니다.
마지막으로 연구진은 U-Net의 각 계층이 어떤 정보를 처리하는지 탐색했습니다. 그림 9는 잡음 제거 프로세스의 다양한 단계(초기, 중간, 후기)의 결과와 U-Net의 다양한 계층의 인코딩 모델을 보여줍니다. 잡음 제거 프로세스의 초기 단계에서 U-Net의 병목 현상 계층(주황색)은 전체 피질에서 가장 높은 예측 성능을 제공합니다. 그러나 잡음 제거가 진행됨에 따라 U-Net(파란색)의 초기 계층은 초기 시각 피질 내의 활동을 예측하는 반면, 병목 현상 계층은 더 높은 시각 피질에 대한 우수한 예측 능력으로 이동합니다.
자세한 연구 내용은 원본 논문을 확인하세요.
위 내용은 'Stable Diffusion 기술을 이용한 영상 재현, CVPR 학회에서 관련 연구 채택'의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Windows는 결코 미학을 무시하는 제품이 아닙니다. XP의 목가적인 녹색 들판부터 Windows 11의 푸른 소용돌이 디자인까지, 기본 바탕 화면 배경화면은 수년간 사용자 즐거움의 원천이었습니다. 이제 Windows 추천을 사용하면 매일 잠금 화면과 바탕 화면 배경 무늬에 사용할 아름답고 경외감을 불러일으키는 이미지에 직접 액세스할 수 있습니다. 불행히도 이러한 이미지는 어울리지 않습니다. Windows 스포트라이트 이미지 중 하나가 마음에 든다면 한동안 배경으로 유지할 수 있도록 해당 이미지를 다운로드하는 방법을 알고 싶을 것입니다. 여기에 당신이 알아야 할 모든 것이 있습니다. WindowsSpotlight란 무엇입니까? Window Spotlight는 설정 앱의 개인 설정 >에서 사용할 수 있는 자동 배경화면 업데이트 프로그램입니다.

대규모 언어 모델(LLM)은 자연어 이해, 언어 생성, 복잡한 추론을 비롯한 여러 중요한 작업에서 강력한 기능을 입증했으며 사회에 지대한 영향을 미쳤습니다. 그러나 이러한 뛰어난 기능을 사용하려면 상당한 교육 리소스(왼쪽 참조)와 긴 추론 시간(오른쪽 참조)이 필요합니다. 따라서 연구자들은 효율성 문제를 해결하기 위한 효과적인 기술적 수단을 개발해야 합니다. 또한 그림의 오른쪽에서 볼 수 있듯이 Mistral-7B와 같은 일부 효율적인 LLM(LanguageModel)이 LLM의 설계 및 배포에 성공적으로 사용되었습니다. 이러한 효율적인 LLM은 LLaMA1-33B와 유사한 정확도를 유지하면서 추론 메모리를 크게 줄일 수 있습니다.

3nm 공정, H100을 능가하는 성능! 최근 외신 디지타임스는 엔비디아가 차세대 GPU인 B100(코드명 '블랙웰')을 인공지능(AI)과 고성능컴퓨팅(HPC) 애플리케이션용 제품으로 개발 중이라는 소식을 전했다. B100은 TSMC의 3nm 공정 공정과 더욱 복잡한 MCM(멀티 칩 모듈) 설계를 사용하며 2024년 4분기에 출시될 예정입니다. 인공지능 GPU 시장의 80% 이상을 독점하고 있는 엔비디아의 경우, B100을 이용해 철이 뜨거울 때 공격할 수 있고, 이번 AI 배치 물결에서 AMD, 인텔 등 도전자들을 더욱 공격할 수 있다. NVIDIA 추정에 따르면, 2027년까지 이 분야의 출력 가치는 대략적으로 도달할 것으로 예상됩니다.

인공지능 기술이 지속적으로 발전하면서 이미지 의미분할 기술은 이미지 분석 분야에서 인기 있는 연구 방향이 되었다. 이미지 의미론적 분할에서는 이미지의 다양한 영역을 분할하고 각 영역을 분류하여 이미지에 대한 포괄적인 이해를 얻습니다. Python은 잘 알려진 프로그래밍 언어입니다. 강력한 데이터 분석 및 데이터 시각화 기능으로 인해 인공 지능 기술 연구 분야에서 가장 먼저 선택됩니다. 이 기사에서는 Python에서 이미지 의미 분할 기술을 사용하는 방법을 소개합니다. 1. 전제 지식이 심화되고 있습니다.

Apple은 iOS 17 사진 앱을 통해 원하는 대로 사진을 더 쉽게 자를 수 있습니다. 방법을 알아보려면 계속 읽어보세요. 이전 iOS 16에서는 사진 앱에서 이미지를 자르는 데 여러 단계가 필요했습니다. 편집 인터페이스를 탭하고 자르기 도구를 선택한 다음 핀치 투 줌 동작을 사용하거나 자르기 도구의 모서리를 드래그하여 자르기를 조정합니다. iOS 17에서 Apple은 고맙게도 이 프로세스를 단순화하여 사진 라이브러리에서 선택한 사진을 확대하면 화면 오른쪽 상단에 새로운 자르기 버튼이 자동으로 나타납니다. 이를 클릭하면 선택한 확대/축소 수준으로 전체 자르기 인터페이스가 표시되므로 원하는 이미지 부분으로 자르기, 이미지 회전, 이미지 반전, 화면 비율 적용 또는 마커 사용이 가능합니다.

다중 모드 대형 모델에 대한 가장 포괄적인 리뷰가 여기에 있습니다! Microsoft의 중국 연구원 7명이 집필한 이 책은 119페이지로 구성되어 있습니다. 이는 이미 완성되어 현재까지 선두에 있는 두 가지 유형의 다중 모드 대형 모델 연구 방향에서 시작하여 시각적 이해와 시각적 생성이라는 5가지 구체적인 연구 주제를 포괄적으로 요약합니다. 통합 시각적 모델 LLM이 지원하는 다중 모드 대형 모델 다중 모드 에이전트는 현상에 초점을 맞춥니다. 다중 모드 기본 모델은 전문화된 모델에서 범용 모델로 이동했습니다. Ps. 그래서 저자는 논문 서두에 도라에몽의 이미지를 직접 그렸습니다. 이 리뷰(보고서)를 누가 읽어야 합니까? Microsoft의 원래 말로: 전문 연구원이든 학생이든 다중 모달 기본 모델의 기본 지식과 최신 진행 상황을 배우는 데 관심이 있는 한 이 콘텐츠는 함께 모이는 데 매우 적합합니다.

매일 이미지 파일로 작업해야 하는 사람들은 프로젝트와 작업의 필요에 맞게 크기를 조정해야 하는 경우가 많습니다. 그러나 처리할 이미지가 너무 많으면 개별적으로 크기를 조정하는 데 많은 시간과 노력이 소요될 수 있습니다. 이 경우 PowerToys와 같은 도구는 무엇보다도 이미지 크기 조정 유틸리티를 사용하여 이미지 파일의 크기를 일괄 조정하는 데 유용할 수 있습니다. Image Resizer 설정을 지정하고 PowerToys를 사용하여 이미지 일괄 크기 조정을 시작하는 방법은 다음과 같습니다. PowerToys를 사용하여 이미지 크기를 일괄 조정하는 방법 PowerToys는 일상 작업 속도를 높이는 데 도움이 되는 다양한 유틸리티와 기능을 갖춘 올인원 프로그램입니다. 유틸리티 중 하나는 이미지입니다.

모바일 사진은 우리가 삶의 순간을 포착하고 공유하는 방식을 근본적으로 변화시켰습니다. 이러한 변화에는 스마트폰, 특히 아이폰의 등장이 중요한 역할을 했습니다. 고급 카메라 기술과 사용자 친화적인 편집 기능으로 잘 알려진 iPhone은 아마추어와 숙련된 사진작가 모두에게 최고의 선택이 되었습니다. iOS 17의 출시는 이러한 여정에서 중요한 이정표가 됩니다. Apple의 최신 업데이트는 향상된 사진 편집 기능 세트를 제공하여 사용자에게 일상적인 스냅샷을 시각적으로 매력적이고 예술적으로 풍부한 이미지로 바꿀 수 있는 더욱 강력한 도구 키트를 제공합니다. 이러한 기술 발전은 사진 촬영 과정을 단순화할 뿐만 아니라 창의적인 표현을 위한 새로운 길을 열어 사용자가 사진에 전문적인 터치를 쉽게 추가할 수 있게 해줍니다.
