목차
1. 시그니처 탐지 기술
2. 트래픽 분석 기술
3. 행동 분석 기술
4. 의미 기반 규칙 일치
ChatGTP를 적용할 수 있는 링크는 무엇입니까GTP" >ChatGTP를 적용할 수 있는 링크는 무엇입니까GTP
ChatGPT 트래픽 탐지 연습" >ChatGPT 트래픽 탐지 연습
Future Outlook" >Future Outlook
기술 주변기기 일체 포함 ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

Apr 26, 2023 pm 04:04 PM
일체 포함 네트워크 보안 chatgpt

ChatGPT란

ChatGPT(Chat Generative Pre-trained Transformer)는 미국 OpenAI가 개발한 챗봇 프로그램으로, 인간의 언어를 이해하고 학습하여 대화를 진행하고, 채팅의 맥락을 기반으로 사용자와 상호작용할 수 있으며, 정말 인간처럼 채팅하고 소통하세요. 이메일 작성, 비디오 스크립트, 카피라이팅, 코드, 논문 작성 등과 같은 작업도 완료할 수 있습니다.

ChatGPT의 알고리즘은 Self-Attention 메커니즘을 사용하여 입력 데이터를 처리하는 심층 신경망인 Transformer 아키텍처를 기반으로 합니다. Transformer 아키텍처는 언어 번역, 텍스트 요약, 질문 응답 등 자연어 처리 작업에 널리 사용됩니다. ChatGPT는 GPT-3.5 대형 언어 모델(LLM Large Language Model)을 사용하며, 이 모델을 기반으로 사전 학습된 언어 모델을 미세 조정하기 위해 강화 학습이 도입됩니다. 여기서의 강화학습은 수동 주석 방법인 RLHF(Reinforcement Learning from Human Feedback)를 사용합니다. LLM 모델이 보상과 처벌 메커니즘을 통해 다양한 자연어 처리 작업을 이해하고, 도움이 됨, 정직함, 무해함의 세 가지 차원에서 어떤 종류의 답변이 고품질인지 판단하는 방법을 배우도록 하는 것이 목적입니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

ChatGPT 모델의 주요 훈련 과정은 다음과 같습니다:

  • 먼저, 모델의 감독 훈련(감독 지침 미세 조정이라고도 함)에 대한 일련의 질문과 답변을 사용합니다.
  • 강화 학습을 사용하여 모델을 더욱 미세 조정합니다. 즉, 주어진 환경에서 모델은 환경의 보상과 처벌을 기반으로 환경에 가장 잘 적응하는 상태에 계속 적합합니다. 구체적으로 말하면 인간의 참여로 보상 네트워크를 훈련시키는 것입니다. 이 보상 네트워크에는 여러 채팅 답변의 순위를 매길 수 있는 기능이 있습니다.
  • 이 보상 네트워크를 사용하면 강화 학습을 통해 모델을 지속적으로 최적화할 수 있습니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

보안 감지 방법

보안 감지 분야에서 점점 더 많은 기업 조직이 인공 지능 기술을 사용하여 네트워크 트래픽의 잠재적 위협을 감지하기 시작하고 있습니다. 인공지능의 장점은 대용량 데이터를 처리해 비정상 트래픽을 빠르고 정확하게 파악하고 분류할 수 있다는 점이다. 인공 지능은 신경망 모델을 훈련함으로써 네트워크 공격, 취약성 공격, 맬웨어 및 기타 동작을 자동으로 감지 및 식별하고, 수동 개입과 ​​오탐을 줄이고, 감지 정확도와 효율성을 향상시킬 수 있습니다.

현재 주류 네트워크 공격 탐지의 핵심은 DPI 기술을 기반으로 개발된 HTTP 접근 탐지(WAF)와 운영체제의 침입 방지 탐지(IPS)입니다. 즉, 애플리케이션 이전에 배포되어 사용자 요청이 서버에 도달하기 전에 검색 및 필터링하고, 각 사용자가 요청한 네트워크 패킷을 분석 및 확인하며, 각 요청의 안전성과 효율성을 보장하고, 유효하지 않거나 공격적인 요청을 가로채거나 차단합니다. 격리. 현재 일반적으로 사용되는 공격 탐지 방법은 다음과 같습니다.

1. 시그니처 탐지 기술

작성된 특정 규칙이나 패턴(정규식)을 기반으로 바이러스, 악성 코드, 침입 행위 등 네트워크 트래픽의 위협을 탐지합니다. 미리. 그러나 공격 방법이 다양하기 때문에 숙련된 해커는 일부 구문을 변경하여 탐지를 우회할 수 있습니다. 정규식은 키워드를 기반으로 개발되었지만, 정규식은 문자열 필터링을 기반으로 하기 때문에 좀 더 복잡한 주입에 대해서만 미리 결정된 공격 행위만 탐지할 수 있습니다. 이 방법에도 높은 오류가 발생하는 문제가 있습니다. 마이너스 금리.

2. 트래픽 분석 기술

유사 트래픽의 소스 IP, 프로토콜 유형 비율, 트래픽 상승 및 하락 추세 등 기본 요소를 모델링하고 분석하여 일부 이상 이벤트에 대한 분석적 결론을 얻을 수 있습니다. 그러나 트래픽 분석은 네트워크 트래픽을 포착하고 분석해야 하기 때문에 높은 컴퓨팅 리소스와 스토리지 리소스가 필요하므로 전체 시스템이 상대적으로 커집니다.

3. 행동 분석 기술

네트워크 트래픽의 행동을 모니터링하여 비정상적인 활동을 탐지합니다. 예를 들어, 웹 애플리케이션 서버가 비업무용 데이터베이스에 액세스하는 경우, 대규모 데이터 흐름이 급증하는 경우, 잦은 액세스 시도 등을 감지하여 잠재적인 네트워크 위협을 발견합니다. 이 과정에서 일부 합법적인 활동(임시 다운로드 등)이 허위로 보고될 수 있으며, 성숙한 행동 분석 모델은 훈련 및 학습에 오랜 시간이 걸리므로 보호 효율성이 낮을 수 있습니다.

4. 의미 기반 규칙 일치

탐지 엔진을 SQL 의미 해석기 또는 명령줄 터미널로 설계하고, 사용자가 입력한 내용을 이해하고 공격에 해당하는지 여부를 판단합니다. 현재는 주로 SQL 주입을 대상으로 하며 사용 시나리오가 제한되어 있습니다.

DPI 엔진 기반 탐지 방식을 기반으로 한 이러한 사용 제한 외에도 침입에 대한 트래픽 분석 엔진을 우회하는 방법도 많이 있습니다. 예를 들어, DPI 엔진의 가능한 HTTP 프로토콜 구문 분석 결함을 사용하여 포트 80만 HTTP 트래픽으로 인식하고 웹 애플리케이션 포트는 8080에 있으며 해당 HTTP 트래픽은 DPI 엔진에 의해 HTTP가 아닌 것으로 구문 분석됩니다. 애플리케이션 계층 공격 탐지를 우회합니다.

ChatGTP를 적용할 수 있는 링크는 무엇입니까GTP

DPI 엔진의 압축 풀기 프로세스를 따라 원본 트래픽을 주요 필드 데이터로 구문 분석하고 규칙 일치를 수행합니다. 규칙이 일치할 수 있으면 패킷에 공격 동작이 포함되어 있다는 의미이고, 일치할 수 없으면 패킷의 위험이 낮다는 의미입니다. DPI 엔진이 수신하는 트래픽은 다음과 같습니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

DPI 엔진은 세션에 따라 트래픽을 그룹화합니다. 동일한 그룹의 메시지는 일반적으로 동일한 5튜플의 요청 응답 메시지입니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

DPI 엔진은 모든 필드가 구문 분석될 때까지 프로토콜 수준에 따라 트래픽을 분해합니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

DPI 엔진은 애플리케이션 계층의 일반 텍스트 요청을 감지할 콘텐츠로 추출합니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

ChatGPT는 대규모 자연어 처리 모델로서 원본 HTTP 메시지 정보를 이해할 수 있으므로 공격이 URL, 쿠키 또는 리퍼러 어디에 나타나든 성공적으로 탐지할 수 있습니다.

ChatGPT 트래픽 탐지 연습

ChatGPT, New Bing 및 기타 공격 판단 모듈은 OpenAI 관련 API 인터페이스를 호출하고 질문을 사용하여 ChatGPT, New Bing 등이 공격 판단을 내릴 수 있도록 합니다.

import openai
openai.api_key = "sk-Bew1dsFo3YXoY2***********81AkBHmY48ijxu"# api token 用来认证
def get_answer(prompt, max_tokens): # 定义一个获取答案的函数
try:
response = openai.Completion.create(
model = "text-davinci-003", # 模型名称
prompt = prompt,# 问题
temperature = 0.7,
max_tokens = max_tokens,# 返回内容的长度限制
stream = False, # False就是一次性返回, True 就是一个个打出来像打字机, 返回的是迭代器, 需要后面代码处理. 此处没有处理 所以用False
top_p = 1, 
frequency_penalty = 0,
presence_penalty = 0 
)
return 0, response['choices'][0]['text'].strip()# 获取返回值关键返回内容
except Exception as e:# 异常处理
return str(e), None
로그인 후 복사

위 기능을 통해 아래와 같이 ChatGPT(사용된 모델은 text-davinci-003)에 질문하는 것과 유사한 효과를 얻을 수 있습니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

ChatGPT는 공격이 있는지에 대한 명확한 결론을 반환합니다. 행동과 행동에 대한 설명을 작성하여 공격 판단을 완성합니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

위 그림과 같이 트래픽에서 판단해야 할 다수의 요청을 서로 다른 파일에 저장할 수 있으며, ChatGPT에서 공격 판단을 수행할 수 있는 샘플 코드는 다음과 같습니다.

def main(read_dir = 'detect'):# 定义main函数
args = []# 缓存列表
global sign_req, all_req# 识别计数
for rf in walk_dir(read_dir, ['.txt']):# 遍历待检测目录
all_req += 1# 总数据包数自增1
content = read_fileA(rf, 'str')[:2048]# 提取报文文件前2048个字符
key_content = content.split('rnrnrn')[0][:1024]# 提取http请求
if len(key_content) < 10: continue# 如果长度太小就不检测
err, sign, disc = judge_attack(key_content, rf_rst)# 调用ChatGPT接口进行攻击检测
if sign: sign_req += 1# 如果检测到攻击, 攻击计数自增1

print('r' + f' 已检测 {all_req: 4} 个报文, 识别到攻击 {sign_req} 个, 检出率: {sign_req/all_req:0.2%}', end='', flush=True) # 打印结论
로그인 후 복사

In 이러한 방식으로 일괄 메시지 공격 탐지가 가능합니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

공격 샘플은 Nuclei의 대상 시스템 스캔 및 전체 PoC 감지에서 생성됩니다. 단일 메시지에서 위협이 있는지 여부를 파악하기 어려운 일부 요청이 있기 때문입니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

위의 상황은 판단하기 위해 더 많은 맥락이 필요할 수 있습니다. 이번에는 정확하게 판단할 수 없는 요청 사례를 제거하고 인위적인 조건에서 정확하게 판단할 수 있는 몇 가지 사례를 제공하려고 합니다.

ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법

ChatGPT의 트래픽 감지 정확도가 매우 높다는 것을 알 수 있으며 이는 기본적으로 보안 전문가의 빠른 판단과 동일합니다. 기대할만한 가치가 있습니다.

관심 있는 독자는 전체 프로젝트 소스 코드를 볼 수 있습니다. 링크는 다음과 같습니다: https://github.com/VitoYane/PcapSplit

Future Outlook

미래에 ChatGPT는 네트워크 보안에서 어떤 역할을 하게 될까요? 사용 방법과 사용 의도에 따라 영향이 달라질 수 있으므로 정확하게 예측하기는 어렵습니다. 인공 지능으로 인한 위협은 새로운 문제가 아닙니다. 사이버 보안 실무자가 ChatGPT의 잠재적 위험을 적시에 인식하고 이를 처리하기 위한 적절한 조치를 취하는 것이 중요합니다.

보안 전문가들은 국가의 지원을 받는 해커들이 처음으로 ChatGPT를 네트워크 공격에 활용할 것이며, 결국 더 많은 공격 조직에서 이 기술을 대규모로 사용할 것이라고 예측합니다. 방어자들은 그러한 공격에 저항할 수 있는 시스템 개발을 시작해야 합니다.

네트워크 보안 보호의 관점에서 기업 조직은 표적 대응 조치를 취하고, ChatGPT 및 기타 유사한 모델을 교육하고, 악성 활동 및 악성 코드를 표시하고, 우회하기 어려운 가드레일을 설정할 수 있습니다. ChatGPT로 인한 위협의 경우 ChatGPT와 같은 인공 지능 도구로 생성된 피싱 공격을 식별하기 위해 사회 공학 공격을 식별하는 지식을 습득하기 위해 직원에게 새로운 사이버 인식 교육을 제공할 수 있습니다.

물론 이것만으로는 충분하지 않습니다. ChatGPT와 같은 인공 지능 도구는 인간 범죄자보다 더 빠르게 새로운 위협을 생성하고 사이버 보안 담당자가 대응할 수 있는 것보다 더 빠르게 위협을 확산시킵니다. 조직이 이러한 변화 속도를 따라잡을 수 있는 유일한 방법은 AI로 AI에 대응하는 것입니다.

요약하자면, 사이버 보안 업계의 연구원, 실무자, 학술 기관 및 기업 조직은 ChatGPT의 기능을 활용하여 취약성 발견, 사고 대응, 피싱 감지 등을 포함하여 혁신하고 협업할 수 있습니다. , ChatGPT와 같은 도구의 개발과 함께 향후 새로운 네트워크 보안 도구를 개발하는 것이 더욱 중요해질 것입니다. 보안 공급업체는 AI 생성 공격을 탐지하기 위해 규칙 기반이 아닌 행동 기반 AI 보안 도구를 개발하고 배포하는 데 더 적극적이어야 합니다.

위 내용은 ChatGPT를 사용하여 보안 탐지의 지능 수준을 향상시키는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

이제 ChatGPT를 사용하면 무료 사용자가 일일 한도가 있는 DALL-E 3를 사용하여 이미지를 생성할 수 있습니다. 이제 ChatGPT를 사용하면 무료 사용자가 일일 한도가 있는 DALL-E 3를 사용하여 이미지를 생성할 수 있습니다. Aug 09, 2024 pm 09:37 PM

DALL-E 3는 이전 모델보다 대폭 개선된 모델로 2023년 9월 공식 출시되었습니다. 복잡한 디테일의 이미지를 생성할 수 있는 현재까지 최고의 AI 이미지 생성기 중 하나로 간주됩니다. 그러나 출시 당시에는 제외되었습니다.

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

전용 앱 출시로 이제 macOS에서 ChatGPT를 사용할 수 있습니다. 전용 앱 출시로 이제 macOS에서 ChatGPT를 사용할 수 있습니다. Jun 27, 2024 am 10:05 AM

Open AI의 ChatGPT Mac 애플리케이션은 이제 모든 사람이 사용할 수 있게 되었으며, 지난 몇 달 동안 ChatGPT Plus를 구독하는 사용자에게만 제한되었습니다. 최신 Apple S가 있는 한 앱은 다른 기본 Mac 앱과 마찬가지로 설치됩니다.

SearchGPT: Open AI가 자체 AI 검색 엔진으로 Google을 상대합니다. SearchGPT: Open AI가 자체 AI 검색 엔진으로 Google을 상대합니다. Jul 30, 2024 am 09:58 AM

오픈AI(Open AI)가 드디어 검색에 본격 진출한다. 샌프란시스코 회사는 최근 검색 기능을 갖춘 새로운 AI 도구를 발표했습니다. 올해 2월 The Information에서 처음 보고한 새로운 도구는 SearchGPT라고 불리며

VSCode 프런트엔드 개발의 새로운 시대: 적극 권장되는 12가지 AI 코드 도우미 VSCode 프런트엔드 개발의 새로운 시대: 적극 권장되는 12가지 AI 코드 도우미 Jun 11, 2024 pm 07:47 PM

프런트엔드 개발 세계에서 VSCode는 강력한 기능과 풍부한 플러그인 생태계를 통해 수많은 개발자가 선택하는 도구가 되었습니다. 최근 몇 년 동안 인공지능 기술의 급속한 발전으로 VSCode의 AI 코드 도우미가 등장하여 개발자의 코딩 효율성이 크게 향상되었습니다. VSCode의 AI 코드 도우미는 비가 내린 후 버섯처럼 생겨나 개발자의 코딩 효율성을 크게 향상시켰습니다. 인공 지능 기술을 사용하여 코드를 지능적으로 분석하고 정확한 코드 완성, 자동 오류 수정, 문법 검사 및 기타 기능을 제공하여 코딩 과정에서 개발자의 오류와 지루한 수동 작업을 크게 줄입니다. 오늘은 여러분의 프로그래밍 여정에 도움이 될 VSCode 프런트엔드 개발 AI 코드 도우미 12명을 추천해 드리겠습니다.

See all articles