Python에서 스레드 풀 map() 메서드를 사용하여 다중 매개변수 목록을 전달하는 방법
스레드 풀 map() 메소드는 다중 매개변수 목록을 전달합니다
이전에는 인터페이스의 다중 스레드 동시성을 촉진하기 위해 threading.thread()가 사용되었지만 동시성 수가 적을 때 더 유용합니다. 동시성이 큰 스레드 패키지 외에 코루틴 처리의 경우 스레드 풀 방식을 사용할 수도 있습니다.
평신도의 관점에서 스레드 풀의 구현은 모든 작업을 메시지 대기열에 넣고 여러 스레드를 시작한 다음 스레드를 실행하는 것입니다. 그러나 스레드 실행이 완료된 후에는 스레드 작업이 중단되지 않으며 스레드 실행을 위해 메시지 큐에서 스레드 작업을 계속 가져오므로 스레드 풀은 다중 스레드 작업에 비해 스레드를 생성하고 닫는 많은 단계를 줄여 대부분의 리소스와 시간을 절약합니다.
스레드 풀 동시성을 구현하려면 모듈
import concurrent.futures
ThreadPoolExecutor가 필요합니다. 두 가지 스레드 풀 메소드인 map()과 submit()이 있습니다. 오늘은 map() 메소드에 대해 이야기하겠습니다.
그 구문은
with concurrent.futures.ThreadPoolExecutor() as pool: res = pool.map(craw, uid_list) print(res)
< code>map() 내부 크롤링은 메소드 이름입니다. 여기서 메소드 이름은 ()
map()
内craw为方法名,这里方法命不带()uid_list
uid_list
가 메소드 매개변수입니다. map() 메서드에 전달되었습니다먼저 살펴보겠습니다. 전체 코드5000 사용자 동시성 지원def test_case_09(self): """5000用户并发助力""" # 通过yaml配置文件封装方法 获取uid_list uid_list = YamlHandler(YamlThePath().number_new).get_uid_list() # add_ticket获取5000账号登陆状态 with concurrent.futures.ThreadPoolExecutor() as pool: pool.map(AccountAccess().add_ticket, uid_list) # 5000账号线程池方法助力用户 with concurrent.futures.ThreadPoolExecutor() as pool: pool.map(PreheatMethod().help, [(uid, self.A, 1) for uid in uid_list]) # 获取用户被助力次数 response = PreheatMethod().init(self.A) print(f"当前用户被助力次数 :{response['data']['userInfo']['helpedCount']}次")
def add_ticket(self, uid): """ 获取单独用户t票 :param uid: 单独用户uid :return: """ self.data['url'] = ApiAddress().get_ticket self.data['host'] = ApiAddress().host self.params['uid'] = str(uid) self.params['type'] = 0 self.data['params'] = json.dumps(self.params) res = r().post(url=ApiAddress().ticket, data=self.data) print(f'获取t票结果:{uid}{res}') return uid
def help(self, agrs): """ 助力用户 :param agrs: uid:当前用户uid to_uid:助力用户uid count:助力次数 :return: """ uid, to_uid, count = agrs self.attrs['toUid'] = str(to_uid) self.attrs['count'] = count response = r().response(uid, self.code, "help", **self.attrs) logger.info(f'help response uid:{uid} to_uid:{to_uid}\n{response}') return response
with concurrent.futures.ThreadPoolExecutor() as pool: pool.map(PreheatMethod().help, [(uid, self.A, 1) for uid in uid_list])
[(uid, self.A, 1) for uid in uid_list]

위 내용은 Python에서 스레드 풀 map() 메서드를 사용하여 다중 매개변수 목록을 전달하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

Sublime 텍스트로 Python 코드를 실행하려면 먼저 Python 플러그인을 설치 한 다음 .py 파일을 작성하고 코드를 작성한 다음 CTRL B를 눌러 코드를 실행하면 콘솔에 출력이 표시됩니다.

Visual Studio Code (VSCODE)에서 코드를 작성하는 것은 간단하고 사용하기 쉽습니다. vscode를 설치하고, 프로젝트를 만들고, 언어를 선택하고, 파일을 만들고, 코드를 작성하고, 저장하고 실행합니다. VSCODE의 장점에는 크로스 플랫폼, 무료 및 오픈 소스, 강력한 기능, 풍부한 확장 및 경량 및 빠른가 포함됩니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

메모장에서 Python 코드를 실행하려면 Python 실행 파일 및 NPPEXEC 플러그인을 설치해야합니다. Python을 설치하고 경로를 추가 한 후 nppexec 플러그인의 명령 "Python"및 매개 변수 "{current_directory} {file_name}"을 구성하여 Notepad의 단축키 "F6"을 통해 Python 코드를 실행하십시오.
