목차
Background
Idea
코드 구현
Java java지도 시간 Java에서 멀티스레딩 및 대규모 일괄 데이터 동기화를 구현하는 방법

Java에서 멀티스레딩 및 대규모 일괄 데이터 동기화를 구현하는 방법

Apr 29, 2023 pm 06:16 PM
java

Background

최근에 두달만에 300만개 이상의 데이터가 발생했는데, 그 이후에도 계속 누적되고 있습니다. 처음에는 데이터가 모두 mysql 테이블에 저장되어 있었기 때문에 이제 페이지에 표시해야 합니다. 그리고 다른 테이블의 데이터와 연결해야 하는데, 제품 요구 사항 페이지의 쿼리 조건이 무려 20개에 달해 결국 이 기능은 기본적으로 데이터를 찾는 것이 불가능합니다.

마지막으로 쿼리 효율성을 높이기 위해 이 두 테이블의 데이터를 MongoDB에 동시에 저장할 계획입니다.

처음에 동기화할 때 단일 스레드를 사용하여 페이징 모드로 두 테이블의 데이터를 동기화한 결과... 하룻밤에 300,000개의 데이터만 동기화되어 매우 느렸습니다! ! !

마침내 몇 가지 수정 끝에 2시간 만에 3백만 개 이상의 데이터가 성공적으로 동기화되었습니다.

다음은 주요 로직입니다.

자신의 서버 성능에 맞게 스레드 개수를 설정해주세요.

Idea

먼저 count를 통해 결과 집합의 총 결과 개수를 알아내고, 각 스레드에 대한 페이징 쿼리 개수를 설정하고, 총 개수와 단일 개수를 통해 스레드 개수를 구하고, 한계의 첨자.

코드 구현

package com.github.admin.controller.loans;

import com.baomidou.mybatisplus.mapper.EntityWrapper;
import com.github.admin.model.entity.CaseCheckCallRecord;
import com.github.admin.model.entity.duyan.DuyanCallRecordDetail;
import com.github.admin.model.entity.loans.CaseCallRemarkRecord;
import com.github.admin.service.duyan.DuyanCallRecordDetailService;
import com.github.admin.service.loans.CaseCallRemarkRecordService;
import com.github.common.constant.MongodbConstant;
import com.github.common.util.DingDingMsgSendUtils;
import com.github.common.util.ListUtils;
import com.github.common.util.Response;
import com.github.common.util.concurrent.Executors;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.collections.CollectionUtils;
import org.springframework.beans.BeanUtils;
import org.springframework.beans.factory.DisposableBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;

/**
 * 多线程同步历史数据
 * @author songfayuan
 * @date 2019-09-26 15:38
 */
@Slf4j
@RestController
@RequestMapping("/demo")
public class SynchronizeHistoricalDataController implements DisposableBean {

    private ExecutorService executor = Executors.newFixedThreadPool(10, "SynchronizeHistoricalDataController");  //newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。

    @Value("${spring.profiles.active}")
    private String profile;
    @Autowired
    private DuyanCallRecordDetailService duyanCallRecordDetailService;
    @Autowired
    private MongoTemplate mongoTemplate;
    @Autowired
    private CaseCallRemarkRecordService caseCallRemarkRecordService;

    /**
     * 多线程同步通话记录历史数据
     * @param params
     * @return
     * @throws Exception
     */
    @GetMapping("/syncHistoryData")
    public Response syncHistoryData(Map<String, Object> params) throws Exception {
        executor.execute(new Runnable() {
            @Override
            public void run() {
                try {
                    logicHandler(params);
                } catch (Exception e) {
                    log.warn("多线程同步稽查通话记录历史数据才处理异常,errMsg = {}", e);
                    DingDingMsgSendUtils.sendDingDingGroupMsg("【系统消息】" + profile + "环境,多线程同步稽查通话记录历史数据才处理异常,errMsg = "+e);
                }
            }
        });
        return Response.success("请求成功");
    }

    /**
     * 处理数据逻辑
     * @param params
     * @throws Exception
     */
    private void logicHandler(Map<String, Object> params) throws Exception {
        /******返回结果:多线程处理完的最终数据******/
        List<DuyanCallRecordDetail> result = new ArrayList<>();

        /******查询数据库总的数据条数******/
        int count = this.duyanCallRecordDetailService.selectCount(new EntityWrapper<DuyanCallRecordDetail>()
                .eq("is_delete", 0)
                .eq("platform_type", 1));
        DingDingMsgSendUtils.sendDingDingGroupMsg("【系统消息】" + profile + "环境,本次需要同步" + count + "条历史稽查通话记录数据。");

//        int count = 2620266;
        /******限制每次查询的条数******/
        int num = 1000;

        /******计算需要查询的次数******/
        int times = count / num;
        if (count % num != 0) {
            times = times + 1;
        }

        /******每个线程开始查询的行数******/
        int offset = 0;

        /******添加任务******/
        List<Callable<List<DuyanCallRecordDetail>>> tasks = new ArrayList<>();
        for (int i = 0; i < times; i++) {
            Callable<List<DuyanCallRecordDetail>> qfe = new ThredQuery(duyanCallRecordDetailService, params, offset, num);
            tasks.add(qfe);
            offset = offset + num;
        }

        /******为避免太多任务的最终数据全部存在list导致内存溢出,故将任务再次拆分单独处理******/
        List<List<Callable<List<DuyanCallRecordDetail>>>> smallList = ListUtils.partition(tasks, 10);
        for (List<Callable<List<DuyanCallRecordDetail>>> callableList : smallList) {
            if (CollectionUtils.isNotEmpty(callableList)) {
//                executor.execute(new Runnable() {
//                    @Override
//                    public void run() {
//                        log.info("任务拆分执行开始:线程{}拆分处理开始...", Thread.currentThread().getName());
//
//                        log.info("任务拆分执行结束:线程{}拆分处理开始...", Thread.currentThread().getName());
//                    }
//                });

                try {
                    List<Future<List<DuyanCallRecordDetail>>> futures = executor.invokeAll(callableList);
                    /******处理线程返回结果******/
                    if (futures != null && futures.size() > 0) {
                        for (Future<List<DuyanCallRecordDetail>> future : futures) {
                            List<DuyanCallRecordDetail> duyanCallRecordDetailList = future.get();
                            if (CollectionUtils.isNotEmpty(duyanCallRecordDetailList)){
                                executor.execute(new Runnable() {
                                    @Override
                                    public void run() {
                                        /******异步存储******/
                                        log.info("异步存储MongoDB开始:线程{}拆分处理开始...", Thread.currentThread().getName());
                                        saveMongoDB(duyanCallRecordDetailList);
                                        log.info("异步存储MongoDB结束:线程{}拆分处理开始...", Thread.currentThread().getName());
                                    }
                                });
                            }
                            //result.addAll(future.get());
                        }
                    }
                } catch (Exception e) {
                    log.warn("任务拆分执行异常,errMsg = {}", e);
                    DingDingMsgSendUtils.sendDingDingGroupMsg("【系统消息】" + profile + "环境,任务拆分执行异常,errMsg = "+e);
                }
            }
        }
    }

    /**
     * 数据存储MongoDB
     * @param duyanCallRecordDetailList
     */
    private void saveMongoDB(List<DuyanCallRecordDetail> duyanCallRecordDetailList) {
        for (DuyanCallRecordDetail duyanCallRecordDetail : duyanCallRecordDetailList) {
            /******重复数据不同步MongoDB******/
            org.springframework.data.mongodb.core.query.Query query = new org.springframework.data.mongodb.core.query.Query();
            query.addCriteria(Criteria.where("callUuid").is(duyanCallRecordDetail.getCallUuid()));
            List<CaseCheckCallRecord> caseCheckCallRecordList = mongoTemplate.find(query, CaseCheckCallRecord.class, MongodbConstant.CASE_CHECK_CALL_RECORD);
            if (CollectionUtils.isNotEmpty(caseCheckCallRecordList)) {
                log.warn("call_uuid = {}在MongoDB已经存在数据,后面数据将被舍弃...", duyanCallRecordDetail.getCallUuid());
                continue;
            }

            /******关联填写的记录******/
            CaseCallRemarkRecord caseCallRemarkRecord = this.caseCallRemarkRecordService.selectOne(new EntityWrapper<CaseCallRemarkRecord>()
                    .eq("is_delete", 0)
                    .eq("call_uuid", duyanCallRecordDetail.getCallUuid()));

            CaseCheckCallRecord caseCheckCallRecord = new CaseCheckCallRecord();
            BeanUtils.copyProperties(duyanCallRecordDetail, caseCheckCallRecord);
            //补充
            caseCheckCallRecord.setCollectorUserId(duyanCallRecordDetail.getUserId());
            
            if (caseCallRemarkRecord != null) {
                //补充
                caseCheckCallRecord.setCalleeName(caseCallRemarkRecord.getContactName());            
            }
            log.info("正在存储数据到MongoDB:{}", caseCheckCallRecord.toString());
            this.mongoTemplate.save(caseCheckCallRecord, MongodbConstant.CASE_CHECK_CALL_RECORD);
        }
    }

    @Override
    public void destroy() throws Exception {
        executor.shutdown();
    }
}


class ThredQuery implements Callable<List<DuyanCallRecordDetail>> {
    /******需要通过构造方法把对应的业务service传进来 实际用的时候把类型变为对应的类型******/
    private DuyanCallRecordDetailService myService;
    /******查询条件 根据条件来定义该类的属性******/
    private Map<String, Object> params;

    /******分页index******/
    private int offset;
    /******数量******/
    private int num;

    public ThredQuery(DuyanCallRecordDetailService myService, Map<String, Object> params, int offset, int num) {
        this.myService = myService;
        this.params = params;
        this.offset = offset;
        this.num = num;
    }

    @Override
    public List<DuyanCallRecordDetail> call() throws Exception {
        /******通过service查询得到对应结果******/
        List<DuyanCallRecordDetail> duyanCallRecordDetailList = myService.selectList(new EntityWrapper<DuyanCallRecordDetail>()
                .eq("is_delete", 0)
                .eq("platform_type", 1)
                .last("limit "+offset+", "+num));
        return duyanCallRecordDetailList;
    }
}
로그인 후 복사

ListUtils 도구

package com.github.common.util;

import com.google.common.collect.Lists;
import lombok.extern.slf4j.Slf4j;

import java.io.*;
import java.util.ArrayList;
import java.util.List;

/**
 * 描述:List工具类
 * @author songfayuan
 * 2018年7月22日下午2:23:22
 */
@Slf4j
public class ListUtils {
    
    /**
     * 描述:list集合深拷贝
     * @param src
     * @return
     * @throws IOException
     * @throws ClassNotFoundException
     * @author songfayuan
     * 2018年7月22日下午2:35:23
     */
    public static <T> List<T> deepCopy(List<T> src) {
        try {
            ByteArrayOutputStream byteout = new ByteArrayOutputStream();
            ObjectOutputStream out = new ObjectOutputStream(byteout);
            out.writeObject(src);
            ByteArrayInputStream bytein = new ByteArrayInputStream(byteout.toByteArray());
            ObjectInputStream in = new ObjectInputStream(bytein);
            @SuppressWarnings("unchecked")
            List<T> dest = (List<T>) in.readObject();
            return dest;
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
            return null;
        } catch (IOException e) {
            e.printStackTrace();
            return null;
        }
    }
    /**
     * 描述:对象深拷贝
     * @param src
     * @return
     * @throws IOException
     * @throws ClassNotFoundException
     * @author songfayuan
     * 2018年12月14日
     */
    public static <T> T objDeepCopy(T src) {
        try {
            ByteArrayOutputStream byteout = new ByteArrayOutputStream();
            ObjectOutputStream out = new ObjectOutputStream(byteout);
            out.writeObject(src);
            ByteArrayInputStream bytein = new ByteArrayInputStream(byteout.toByteArray());
            ObjectInputStream in = new ObjectInputStream(bytein);
            @SuppressWarnings("unchecked")
            T dest = (T) in.readObject();
            return dest;
        } catch (ClassNotFoundException e) {
            log.error("errMsg = {}", e);
            return null;
        } catch (IOException e) {
            log.error("errMsg = {}", e);
            return null;
        }
    }

    /**
     * 将一个list均分成n个list,主要通过偏移量来实现的
     * @author songfayuan
     * 2018年12月14日
     */
    public static <T> List<List<T>> averageAssign(List<T> source, int n) {
        List<List<T>> result = new ArrayList<List<T>>();
        int remaider = source.size() % n;  //(先计算出余数)
        int number = source.size() / n;  //然后是商
        int offset = 0;//偏移量
        for (int i = 0; i < n; i++) {
            List<T> value = null;
            if (remaider > 0) {
                value = source.subList(i * number + offset, (i + 1) * number + offset + 1);
                remaider--;
                offset++;
            } else {
                value = source.subList(i * number + offset, (i + 1) * number + offset);
            }
            result.add(value);
        }
        return result;
    }

    /**
     * List按指定长度分割
     * @param list the list to return consecutive sublists of (需要分隔的list)
     * @param size the desired size of each sublist (the last may be smaller) (分隔的长度)
     * @author songfayuan
     * @date 2019-07-07 21:37
     */
    public static <T> List<List<T>> partition(List<T> list, int size){
        return  Lists.partition(list, size); // 使用guava
    }

    /**
     * 测试
     * @param args
     */
    public static void main(String[] args) {
        List<Integer> bigList = new ArrayList<>();
        for (int i = 0; i < 101; i++){
            bigList.add(i);
        }
        log.info("bigList长度为:{}", bigList.size());
        log.info("bigList为:{}", bigList);
        List<List<Integer>> smallists = partition(bigList, 20);
        log.info("smallists长度为:{}", smallists.size());
        for (List<Integer> smallist : smallists) {
            log.info("拆分结果:{},长度为:{}", smallist, smallist.size());
        }
    }

}
로그인 후 복사

위 내용은 Java에서 멀티스레딩 및 대규모 일괄 데이터 동기화를 구현하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

자바의 완전수 자바의 완전수 Aug 30, 2024 pm 04:28 PM

Java의 완전수 가이드. 여기서는 정의, Java에서 완전 숫자를 확인하는 방법, 코드 구현 예제에 대해 논의합니다.

Java의 난수 생성기 Java의 난수 생성기 Aug 30, 2024 pm 04:27 PM

Java의 난수 생성기 안내. 여기서는 예제를 통해 Java의 함수와 예제를 통해 두 가지 다른 생성기에 대해 설명합니다.

자바의 웨카 자바의 웨카 Aug 30, 2024 pm 04:28 PM

Java의 Weka 가이드. 여기에서는 소개, weka java 사용 방법, 플랫폼 유형 및 장점을 예제와 함께 설명합니다.

Java의 스미스 번호 Java의 스미스 번호 Aug 30, 2024 pm 04:28 PM

Java의 Smith Number 가이드. 여기서는 정의, Java에서 스미스 번호를 확인하는 방법에 대해 논의합니다. 코드 구현의 예.

Java Spring 인터뷰 질문 Java Spring 인터뷰 질문 Aug 30, 2024 pm 04:29 PM

이 기사에서는 가장 많이 묻는 Java Spring 면접 질문과 자세한 답변을 보관했습니다. 그래야 면접에 합격할 수 있습니다.

Java 8 Stream foreach에서 나누거나 돌아 오시겠습니까? Java 8 Stream foreach에서 나누거나 돌아 오시겠습니까? Feb 07, 2025 pm 12:09 PM

Java 8은 스트림 API를 소개하여 데이터 컬렉션을 처리하는 강력하고 표현적인 방법을 제공합니다. 그러나 스트림을 사용할 때 일반적인 질문은 다음과 같은 것입니다. 기존 루프는 조기 중단 또는 반환을 허용하지만 스트림의 Foreach 메소드는이 방법을 직접 지원하지 않습니다. 이 기사는 이유를 설명하고 스트림 처리 시스템에서 조기 종료를 구현하기위한 대체 방법을 탐색합니다. 추가 읽기 : Java Stream API 개선 스트림 foreach를 이해하십시오 Foreach 메소드는 스트림의 각 요소에서 하나의 작업을 수행하는 터미널 작동입니다. 디자인 의도입니다

Java의 날짜까지의 타임스탬프 Java의 날짜까지의 타임스탬프 Aug 30, 2024 pm 04:28 PM

Java의 TimeStamp to Date 안내. 여기서는 소개와 예제와 함께 Java에서 타임스탬프를 날짜로 변환하는 방법에 대해서도 설명합니다.

캡슐의 양을 찾기위한 Java 프로그램 캡슐의 양을 찾기위한 Java 프로그램 Feb 07, 2025 am 11:37 AM

캡슐은 3 차원 기하학적 그림이며, 양쪽 끝에 실린더와 반구로 구성됩니다. 캡슐의 부피는 실린더의 부피와 양쪽 끝에 반구의 부피를 첨가하여 계산할 수 있습니다. 이 튜토리얼은 다른 방법을 사용하여 Java에서 주어진 캡슐의 부피를 계산하는 방법에 대해 논의합니다. 캡슐 볼륨 공식 캡슐 볼륨에 대한 공식은 다음과 같습니다. 캡슐 부피 = 원통형 볼륨 2 반구 볼륨 안에, R : 반구의 반경. H : 실린더의 높이 (반구 제외). 예 1 입력하다 반경 = 5 단위 높이 = 10 단위 산출 볼륨 = 1570.8 입방 단위 설명하다 공식을 사용하여 볼륨 계산 : 부피 = π × r2 × h (4

See all articles