목차
머신러닝을 위한 훈련 데이터를 어떻게 조작하나요?
데이터 중독 공격
데이터 중독 사례를 감지하고 예방하는 방법은 무엇입니까?
침투 테스트를 통해 방어 구축
기술 주변기기 일체 포함 기계 학습 모델을 훈련하는 데 사용되는 데이터의 보안을 어떻게 보장합니까?

기계 학습 모델을 훈련하는 데 사용되는 데이터의 보안을 어떻게 보장합니까?

Apr 29, 2023 pm 08:43 PM
일체 포함 빅데이터 기계 학습

사이버 범죄자가 기계 학습 모델 성능을 원격으로 조작하고 부정적인 영향을 미치는 것은 어렵지 않습니다.

기계 학습 모델을 훈련하는 데 사용되는 데이터의 보안을 어떻게 보장합니까?

악의적인 사용자는 기계 학습 훈련 데이터를 손상시키고, 훈련 데이터 세트에 있는 민감한 사용자 정보에 불법적으로 액세스하고, 유사한 다른 문제를 일으킬 수 있습니다.

지난 10년 동안 기계 학습과 인공 지능의 채택이 급증했습니다. 이러한 기술과 관련된 응용 분야는 얼굴 인식 및 일기 예보 응용 프로그램부터 정교한 추천 시스템 및 가상 비서에 이르기까지 다양합니다. 인공지능이 우리 삶에 점점 더 통합되면서 인공지능 시스템의 사이버 보안 문제도 대두되고 있습니다. 세계경제포럼(World Economic Forum)의 2022년 글로벌 위험 보고서에 따르면, 사이버 보안 실패는 향후 10년간 주목해야 할 10대 글로벌 위험 중 하나입니다.

사이버 보안과 AI는 언젠가는 필연적으로 교차하겠지만, AI의 힘을 활용하여 사이버 보안을 강화한다는 아이디어입니다. 사이버 보안이 존재하는 동안 기계 학습 모델의 무결성을 보호하려면 사이버 보안의 힘도 필요합니다. 이러한 모델에 대한 위협은 소스, 즉 모델 교육 데이터에서 비롯됩니다. 위험은 기계 학습 훈련 데이터가 해커에 의해 원격으로 또는 현장에서 조작될 수 있다는 것입니다. 사이버 범죄자는 훈련 데이터 세트를 조작하여 알고리즘 출력에 영향을 미치고 시스템 방어력을 저하시킵니다. 이 방법은 공격자가 알고리즘 사용자인 척 하기 때문에 추적이 불가능한 경우가 많습니다.

머신러닝을 위한 훈련 데이터를 어떻게 조작하나요?

머신 러닝 주기에는 업데이트된 정보와 사용자 통찰력을 사용한 지속적인 교육이 포함됩니다. 악의적인 사용자는 기계 학습 모델에 특정 입력을 제공하여 이 프로세스를 조작할 수 있습니다. 조작된 기록을 사용하여 은행 계좌 번호, 사회 보장 세부 정보, 인구 통계 정보 및 기계 학습 모델의 교육 데이터로 사용되는 기타 기밀 데이터와 같은 기밀 사용자 정보를 확인할 수 있었습니다.

해커가 기계 학습 알고리즘을 조작하기 위해 사용하는 몇 가지 일반적인 방법은 다음과 같습니다.

데이터 중독 공격

데이터 중독에는 기계 학습 모델에 사용되는 학습 데이터가 손상됩니다. 이 교육 데이터는 개발자, 개인 및 오픈 소스 데이터베이스와 같은 독립적인 당사자로부터 제공됩니다. 악의적인 당사자가 교육 데이터 세트에 정보를 제공하는 데 관여하는 경우 알고리즘이 이를 잘못 분류하도록 주의 깊게 구성된 "독성" 데이터가 제공됩니다.

예를 들어, 말을 인식하는 알고리즘을 훈련하는 경우 알고리즘은 말을 식별하기 위해 훈련 데이터세트에 있는 수천 개의 이미지를 처리합니다. 이 학습을 향상시키기 위해 흑백 소의 알고리즘 이미지도 제공합니다. 그러나 실수로 갈색 소의 이미지를 데이터 세트에 추가하면 모델은 이를 말로 분류합니다. 모델은 갈색 소와 갈색 말의 차이를 구별하도록 훈련될 때까지 차이를 이해하지 못합니다.

마찬가지로 공격자는 훈련 데이터를 조작하여 자신에게 유리한 모델 분류 시나리오를 가르칠 수 있습니다. 예를 들어, 악성 코드를 양성 소프트웨어로, 보안 소프트웨어를 독성 데이터를 사용하는 위험한 소프트웨어로 보도록 알고리즘을 훈련할 수 있습니다.

데이터가 오염되는 또 다른 방법은 기계 학습 모델에 대한 "백도어"를 이용하는 것입니다. 백도어는 모델 설계자에게는 알려지지 않았지만 공격자가 알고리즘을 조작하는 데 사용할 수 있는 입력 유형입니다. 해커가 AI 시스템에서 취약점을 발견하면 이를 악용하여 원하는 작업을 모델에 직접 가르칠 수 있습니다.

공격자가 백도어에 액세스하여 파일에 특정 문자가 있으면 양성으로 분류되어야 한다고 모델에 가르친다고 가정해 보겠습니다. 이제 공격자는 이러한 문자를 추가하여 모든 파일을 무해한 파일로 만들 수 있으며, 모델이 이러한 파일을 발견할 때마다 훈련된 대로 해당 파일을 무해한 파일로 분류합니다.

데이터 중독은 회원 추론 공격이라는 또 다른 공격과 결합되기도 합니다. MIA(Membership Inference Attack) 알고리즘을 사용하면 공격자는 특정 레코드가 교육 데이터 세트의 일부인지 여부를 평가할 수 있습니다. 데이터 중독과 결합된 멤버십 추론 공격은 훈련 데이터 내부의 정보를 부분적으로 재구성하는 데 사용될 수 있습니다. 기계 학습 모델은 일반화된 데이터에서도 잘 작동하지만 훈련 데이터에서도 잘 작동합니다. 멤버십 추론 공격 및 재구성 공격은 이 기능을 활용하여 훈련 데이터와 일치하는 입력을 제공하고 기계 학습 모델 출력을 사용하여 훈련 데이터에서 사용자 정보를 다시 생성합니다.

데이터 중독 사례를 감지하고 예방하는 방법은 무엇입니까?

모델은 정기적으로 새로운 데이터로 재교육되며, 이 재교육 기간 동안 독성 데이터가 교육 데이터 세트에 도입될 수 있습니다. 시간이 지남에 따라 발생하므로 이러한 활동을 추적하기가 어렵습니다. 모델 개발자와 엔지니어는 입력 유효성 테스트, 회귀 테스트, 속도 제한 및 기타 통계 기술을 통해 각 교육 주기 전에 이러한 입력을 차단하거나 감지할 수 있습니다. 또한 단일 사용자의 입력 수를 제한하고, 유사한 IP 주소 또는 계정의 입력이 여러 개 있는지 확인하고, 골든 데이터 세트에 대해 재교육된 모델을 테스트할 수 있습니다. 골든 데이터 세트는 기계 학습 기반 교육 데이터 세트에 대한 검증되고 신뢰할 수 있는 참조 포인트입니다.

해커는 백도어 공격을 수행하기 위해 기계 학습 모델이 어떻게 작동하는지에 대한 정보가 필요합니다. 따라서 강력한 접근 통제를 구현하고 정보 유출을 방지하여 이러한 정보를 보호하는 것이 중요합니다. 권한 제한, 데이터 버전 관리, 코드 변경 로깅과 같은 일반적인 보안 관행은 모델 보안을 강화하고 중독 공격으로부터 기계 학습 훈련 데이터를 보호합니다.

침투 테스트를 통해 방어 구축

기업은 네트워크에 대한 정기적인 침투 테스트를 수행할 때 기계 학습 및 인공 지능 시스템 테스트를 고려해야 합니다. 침투 테스트는 잠재적인 공격을 시뮬레이션하여 보안 시스템의 취약점을 식별합니다. 모델 개발자는 마찬가지로 알고리즘에 대해 시뮬레이션된 공격을 실행하여 데이터 중독 공격에 대한 방어책을 구축할 수 있는 방법을 확인할 수 있습니다. 데이터 중독 취약성에 대해 모델을 테스트할 때 추가될 수 있는 데이터 포인트에 대해 알아보고 그러한 데이터 포인트를 삭제하는 메커니즘을 구축할 수 있습니다.

사소해 보이는 양의 잘못된 데이터라도 기계 학습 모델을 비효율적으로 만들 수 있습니다. 해커들은 이러한 약점을 악용하고 기업 데이터 시스템을 손상시키는 데 적응해 왔습니다. 기업이 인공 지능에 점점 더 의존함에 따라 기계 학습 교육 데이터의 보안과 개인 정보를 보호해야 하며 그렇지 않으면 고객 신뢰를 잃을 위험이 있습니다.

위 내용은 기계 학습 모델을 훈련하는 데 사용되는 데이터의 보안을 어떻게 보장합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. 크로스 플레이가 있습니까?
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. Aug 01, 2024 pm 09:40 PM

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

See all articles