MySQL 调优基础(二) Linux内存管理_MySQL
进程的运行,必须使用内存。下图是Linux中进程中的内存的分布图:
其中最重要的 heap segment 和 stack segment。其它内存段基本是大小固定的。注意stack是向低地址增长的,和heap相反。另外进程的内存地址从0开始,是因为使用的是虚拟内存。所以存在虚拟内存到物理内存的映射。目前服务器一般都是64位的,32位的已经极少了,32为对内存有极大限制。
1. Linux 虚拟内存
Linux是通过虚拟内存的方式来管理内存的。虚拟内存和物理内存之间存在映射关系。当进程在CPU上运行时,虚拟内存就会映射到物理内存,供CPU来访问。
applications do not allocate physical memory, but request a memory map of a certain size at the Linux kernel and in exchange receive a map in virtual memory. As you can see, virtual memory does not necessarily have to be mapped into physical memory. If your application allocates a large amount of memory, some of it might be mapped to the swap file on the disk subsystem.
图示 进程虚拟内存 = 进程物理内存 + 进程swap(page out):
上图是top命令的截图,可以看到:mysqld 使用的虚拟内存为 735M,而常驻物理内存为 430M,所以其余的305M被swap out了(实际上是延迟分配)。
VIRT:The total amount of virtual memory used by the task. It includes all code, data and shared libraries plus pages that have been swapped out.
RES: Resident size (kb)。The non-swapped physical memory a task is using(常驻内存).
Linux handles the memory resource far more efficiently. The default configuration of the virtual memory manager allocates all available free
memory space as disk cache. Hence it is not unusual to see productive Linux systems that boast gigabytes of memory but only have 20 MB of that memory free. In the same context, Linux also handles swap space very efficiently. Swap space being used does not indicate a memory bottleneck but proves how efficiently Linux handles system resources.
There is no need to be alarmed if you find the swap partition filled to 50%. The fact that swap space is being used does not indicate a memory bottleneck; instead it proves how efficiently Linux handles system resources.
可见,系统显示空闲的内存很少,并不表示真的存在内存瓶颈;swap分区被使用了,也不代表存在内存瓶颈。
内存的分配:
Linux 管理内存是通过内存page为单位的,一般一个page为4K。Linux通过一个维持一个free内存的列表来管理和分配内存,并且维持内存的连续,防止内存碎片的产生。该系统被称为buddy system。内存的分配和管理全依靠buddy system.
内存的回收(page frame reclaiming):
当空闲内存不足时,就涉及到内存的回收。内存的回收有两种方式:回收用于缓存磁盘文件的 page cache(disk cache);swap out/page out 其它非活跃进程的内存;而且优先回收用于文件缓存的内存(disk cache):
When kswapd reclaims pages, it would rather shrink the page cache than page out (or swap out) the pages owned by processes.
然后会扫描内存的 active list 和 inactive list,根据LRU原则将active的page移到inactive,然后将inactive list中的page swap out.
active list 和 inactive list,可以用vmstat -a 查看到:
[root@localhost ~]# vmstat -a
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----
r b swpd free inact active si so bi bo in cs us sy id wa st
0 0 0 462024 72680 471416 0 0 756 182 107 1 13 85 0 0
kswapd: kernel swap daemon
内存的两大主要用处:
The pages are used mainly for two purposes: page and process address space. The page cache is pages mapped to a file on disk. The
cache pages that belong to a process address space (called anonymous memory because it is not mapped to any files, and it has no name) are used for heap and stack.
一、disk cache(page cache, file cache);
二、进程使用(anonymous memory、heap 和 stack)
kswapd 处理swap in 和swap out; 而 pdflush 处理disk cache到磁盘的刷新。
2. 如何尽量避免swap对mysql的影响
控制系统kswapd在内核中有一个专门的参数:
[root@localhost ~]# cat /proc/sys/vm/swappiness
60
我们把 vm.swappiness = 0 设置好,就可以在内存不足时,尽量避免系统发生swap,而尽量去 flush disk cache. 但是最新的Linux内核修改了对vm.swappingness=0 的解释,如果设置成0,可能会发生00M,而将mysqld给kill掉。新内核(2.6.32-303.el6及以后)推荐的做法是:
1)尽量保证Linux操作系统还有足够的内存;
2)最新的内核,建议把vm.swappiness设置1;
3)考虑设置 /proc/$(pidof -s mysqld)/oom_adj为较小的值来尽量避免MySQL由于内存不足而被关闭。
具体参见:http://www.woqutech.com/?p=1397
3. 如何修改 oom_adj 值
查看mysqld的oom_ajd值:
[root@localhost ~]# cat /proc/`pidof -s mysqld`/oom_adj
0
[root@localhost ~]# cat /proc/$(pidof -s mysqld)/oom_adj
0
默认值为0. 当我们设置为-17时,对于该进程来说,就不会触发OOM机制,被杀掉。修改:
[root@localhost ~]# echo -17 > /proc/$(pidof mysqld)/oom_adj
[root@localhost ~]# cat /proc/$(pidof mysqld)/oom_adj
-17
这里为什么是-17呢?这和Linux的实现有关系。在Linux内核中的oom.h文件中,可以看到下面的定义:
/* /proc//oom_adj set to -17 protects from the oom-killer */
#define OOM_DISABLE (-17)
/* inclusive */
#define OOM_ADJUST_MIN (-16)
#define OOM_ADJUST_MAX 15
这个oom_adj中的变量的范围为15到-16之间。越大越容易被kill。oom_score就是它计算出来的一个值,就是根据这个值来选择哪些进程被kill掉的。
总之,通过上面的分析可知,满足下面的条件后,就是启动OOM机制。
1) VM里面分配不出更多的page(注意linux kernel是延迟分配page策略,及用到的时候才alloc;所以malloc + memset才有效)。
2) 用户地址空间不足,这种情况在32bit机器上及user space超过了3GB,在64bit机器上不太可能发生。
具体参见:http://blog.chinaunix.net/uid-20788636-id-4308527.html
其实设置mysqld的oom_adj不是最好的选择,mysqld不会被kill,必然就会导致其它进程被kill掉;最好还是保障内存充足或者设置vm.swappiness=1比较好
4. 内存瓶颈的检测
Linux内存的瓶颈,主要在于查看是否有比较严重的 swap 的发生(swap out/page out)。其它空虚内存的大小,swap分区被使用都不能说明说明问题。
区分 swap out 和 page out:
Page out moves individual pages to swap space on the disk; swapping is a bigger operation that moves the entire address space of a process to swap space in one operation.(page out 是指将单独的page交换到磁盘,而swap out是指将整个进程的内存交换到磁盘)
使用 vmstat 从整个系统层面查看swap out:
[root@localhost ~]# vmstat 2 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 400776 55292 82416 0 0 335 103 87 0 6 94 0 0 0 0 0 400768 55292 82416 0 000 54 65 0 2 98 0 0 0 0 0 400768 55292 82416 0 000 69 72 0 3 97 0 0 0 0 0 400644 55300 82416 0 00 18 67 79 0 3 97 0 0 0 0 0 400644 55300 82416 0 000 51 61 0 2 98 0 0 0 0 0 400644 55300 82416 0 000 64 69 0 2 98 0 0 0 0 0 400644 55308 82416 0 00 20 58 73 0 2 98 0 0
其中的 swap si: 表示每秒 swap in; so:表示每秒swap out;
Swap
si: Amount of memory swapped in from disk (/s).
so: Amount of memory swapped to disk (/s).
使用 sar -B 从整个系统层面查看page out:
[root@localhost ~]# sar -B Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/01/2015 _i686_ (1 CPU) 10:57:33 AM LINUX RESTART 11:00:01 AM pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff 11:10:01 AM 39.84 4.85 340.32 0.21 39.40 0.00 0.00 0.00 0.00 11:20:01 AM 0.06 2.76 10.69 0.00 3.21 0.00 0.00 0.00 0.00 11:30:01 AM 0.14 2.68 10.16 0.00 3.08 0.00 0.00 0.00 0.00 11:40:01 AM 69.58 13.07 154.16 0.01 47.29 0.00 0.00 0.00 0.00 11:50:01 AM 1.84 3.93 28.39 0.02 9.17 0.00 0.00 0.00 0.00 12:00:01 PM 0.00 3.20 19.70 0.00 10.87 0.00 0.00 0.00 0.00 12:10:01 PM 0.01 2.90 31.96 0.00 8.77 0.00 0.00 0.00 0.00 12:20:01 PM 0.06 3.06 40.04 0.00 10.98 0.00 0.00 0.00 0.00 12:30:02 PM 2.17 3.81 81.19 0.02 21.63 0.00 0.00 0.00 0.00 Average: 12.62 4.47 79.63 0.03 17.15 0.00 0.00 0.00 0.00 03:01:38 PM LINUX RESTART 03:10:01 PM pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff 03:20:01 PM 6.22 3.99 93.05 0.04 22.89 0.00 0.00 0.00 0.00 Average: 6.22 3.99 93.05 0.04 22.89 0.00 0.00 0.00 0.00 [root@localhost ~]# sar -B 2 3 Linux 2.6.32-504.el6.i686 (localhost.localdomain) 10/01/2015 _i686_ (1 CPU) 03:24:05 PM pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff 03:24:07 PM 0.00 0.00 26.63 0.00 30.15 0.00 0.00 0.00 0.00 03:24:09 PM 0.00 0.00 19.70 0.00 30.30 0.00 0.00 0.00 0.00 03:24:11 PM 0.00 0.00 15.00 0.00 30.00 0.00 0.00 0.00 0.00 Average: 0.00 0.00 20.44 0.00 30.15 0.00 0.00 0.00 0.00
sar -B 取的是从系统启动到目前的平均值;sar -B 2 3 是指每隔2秒取值,总共取值3次。输出字段的含义如下:
-B Report paging statistics. Some of the metrics below are available only with post 2.5 kernels. The following values are displayed: pgpgin/s Total number of kilobytes the system paged in from disk per second. Note: With old kernels (2.2.x) this value is a number of blocks per second (and not kilo- bytes). pgpgout/s Total number of kilobytes the system paged out to disk per second. Note: With old kernels (2.2.x) this value is a number of blocks per second (and not kilo- bytes). fault/s Number of page faults (major + minor) made by the system per second. This is not a count of page faults that generate I/O, because some page faults can be resolved without I/O. majflt/s Number of major faults the system has made per second, those which have required loading a memory page from disk. pgfree/s Number of pages placed on the free list by the system per second. pgscank/s Number of pages scanned by the kswapd daemon per second. pgscand/s Number of pages scanned directly per second. pgsteal/s Number of pages the system has reclaimed from cache (pagecache and swapcache) per second to satisfy its memory demands. %vmeff Calculated as pgsteal / pgscan, this is a metric of the efficiency of page reclaim. If it is near 100% then almost every page coming off the tail of the inactive list is being reaped. If it gets too low (e.g. less than 30%) then the virtual memory is having some difficulty. This field is displayed as zero if no pages have been scanned during the interval of time.
pgpgout/s 表示就是每秒的page out 的KB数量。majflt/s 也是极为重要的指标,该指标涉及到虚拟内存的 page fault机制。
虚拟内存的 page fault机制:
linux 使用虚拟内存层来映射物理地址空间,这种映射在某种意义上是说当一个进程开始运行,内核仅仅映射其需要的那部分,内核首先会搜索 CPU缓存和物理内存,如果没有找到内核则开始一次 MPF, 一次 MPF 即是一次对磁盘子系统的请求,它将数据页从磁盘和缓存读入 RAM。一旦内存页被映射到高速缓冲区,内核便会试图使用这些页,被称作 MnPF,MnPF 通过重复使用内存页而缩短了内核时间。
文件缓冲区(disk cache)可使内核减少对 MPFs 和 MnPFs 的使用, 随着系统不断地 IO 操作, 缓冲区会随之增大, 直至内存空闲空间不足并开始回收.
使用 free 查看空闲内存:
[root@localhost ~]# free total used free shared buffers cached Mem: 1030548 630284 400264 220 55388 82428 -/+ buffers/cache: 492468 538080 Swap: 1048572 0 1048572 [root@localhost ~]# free -m total used free shared buffers cached Mem: 1006 616 390 0 54 80 -/+ buffers/cache: 481 524 Swap: 1023 0 1023
1g的内存,1g的swap分区,使用了616M,空闲390M; swap分区没有被使用,全部空闲。
其实free内存很小不能说明问题,但是free比较大,却能说明内存充足。
swap如果大部分被使用,或者全部使用也能说明 swap 严重,当然最好结合 vmstat 来综合考虑。
使用 ps -mp 1959 -o THREAD,pmem,rss,vsz,tid,pid 查看mysqld的内存和CPU使用情况:
[root@localhost ~]# pidof -s mysqld 1959 [root@localhost ~]# ps -mp 1959 -o THREAD,pmem,rss,vsz,tid,pid USER %CPU PRI SCNT WCHAN USER SYSTEM %MEM RSS VSZ TID PID mysql 0.6 - - - - - 42.8 441212 752744 - 1959 mysql 0.1 19 - - - - - - - 1959 - mysql 0.0 19 - - - - - - - 1962 - mysql 0.0 19 - - - - - - - 1963 - mysql 0.0 19 - - - - - - - 1964 - mysql 0.0 19 - - - - - - - 1965 - mysql 0.0 19 - - - - - - - 1966 - mysql 0.0 19 - - - - - - - 1967 - mysql 0.0 19 - - - - - - - 1968 - mysql 0.0 19 - - - - - - - 1969 - mysql 0.0 19 - - - - - - - 1970 - mysql 0.0 19 - - - - - - - 1971 - mysql 0.0 19 - - - - - - - 1973 - mysql 0.0 19 - - - - - - - 1974 - mysql 0.0 19 - - - - - - - 1975 - mysql 0.0 19 - - - - - - - 1976 - mysql 0.0 19 - - - - - - - 1977 - mysql 0.0 19 - - - - - - - 1978 - mysql 0.0 19 - - - - - - - 1979 - mysql 0.0 19 - - - - - - - 1980 - mysql 0.0 19 - - - - - - - 1981 - mysql 0.0 19 - - - - - - - 1982 -
使用 pmap 查看进程的内存分布情况:
[root@localhost ~]# pmap -x 1959 1959: /usr/local/mysql/bin/mysqld --basedir=/usr/local/mysql --datadir=/var/lib/mysql --plugin-dir=/usr/local/mysql/lib/plugin --user=mysql --log-error=/var/log/mysqld.log --pid-file=/var/mysql/mysqld.pid --socket=/var/lib/mysql/mysql.sock Address Kbytes RSS Dirty Mode Mapping 00297000 4 4 0 r-x-- [ anon ] 002e0000 48 20 0 r-x-- libnss_files-2.12.so 002ec000 4 4 4 r---- libnss_files-2.12.so 002ed000 4 4 4 rw--- libnss_files-2.12.so 003fb000 116 60 0 r-x-- libgcc_s-4.4.7-20120601.so.1 00418000 4 4 4 rw--- libgcc_s-4.4.7-20120601.so.1 0041b000 28 8 0 r-x-- libcrypt-2.12.so 00422000 4 4 4 r---- libcrypt-2.12.so 00423000 4 4 4 rw--- libcrypt-2.12.so 00424000 156 0 0 rw--- [ anon ] 0044d000 368 148 0 r-x-- libfreebl3.so 004a9000 4 0 0 ----- libfreebl3.so 004aa000 4 4 4 r---- libfreebl3.so 004ab000 4 4 4 rw--- libfreebl3.so 004ac000 16 12 12 rw--- [ anon ] 0053e000 120 100 0 r-x-- ld-2.12.so 0055c000 4 4 4 r---- ld-2.12.so 0055d000 4 4 4 rw--- ld-2.12.so 00560000 4 4 0 r-x-- libaio.so.1.0.1 00561000 4 4 4 rw--- libaio.so.1.0.1 00564000 1600 680 0 r-x-- libc-2.12.so 006f4000 8 8 8 r---- libc-2.12.so 006f6000 4 4 4 rw--- libc-2.12.so 006f7000 12 12 12 rw--- [ anon ] 006fc000 92 84 0 r-x-- libpthread-2.12.so 00713000 4 4 4 r---- libpthread-2.12.so 00714000 4 4 4 rw--- libpthread-2.12.so 00715000 8 4 4 rw--- [ anon ] 00719000 12 8 0 r-x-- libdl-2.12.so 0071c000 4 4 4 r---- libdl-2.12.so 0071d000 4 4 4 rw--- libdl-2.12.so 00720000 28 16 0 r-x-- librt-2.12.so 00727000 4 4 4 r---- librt-2.12.so 00728000 4 4 4 rw--- librt-2.12.so 0072b000 160 28 0 r-x-- libm-2.12.so 00753000 4 4 4 r---- libm-2.12.so 00754000 4 4 4 rw--- libm-2.12.so 07b14000 900 400 0 r-x-- libstdc++.so.6.0.13 07bf5000 16 16 12 r---- libstdc++.so.6.0.13 07bf9000 8 8 8 rw--- libstdc++.so.6.0.13 07bfb000 24 8 8 rw--- [ anon ] 08048000 12096 4284 0 r-x-- mysqld 08c18000 1224 468 304 rw--- mysqld 08d4a000 256 252 252 rw--- [ anon ] 0a809000 5492 5396 5396 rw--- [ anon ] 8abfd000 4 0 0 ----- [ anon ] 8abfe000 10240 4 4 rw--- [ anon ] 8b5fe000 4 0 0 ----- [ anon ] 8b5ff000 10240 4 4 rw--- [ anon ] 8bfff000 4 0 0 ----- [ anon ] 8c000000 10240 8 8 rw--- [ anon ] 8ca00000 1024 436 436 rw--- [ anon ] 8cbf7000 4 0 0 ----- [ anon ] 8cbf8000 10240 16 16 rw--- [ anon ] 8d5f8000 4 0 0 ----- [ anon ] 8d5f9000 10240 8 8 rw--- [ anon ] 8dff9000 4 0 0 ----- [ anon ] 8dffa000 10240 4 4 rw--- [ anon ] 8e9fa000 4 0 0 ----- [ anon ] 8e9fb000 10240 4 4 rw--- [ anon ] 8f3fb000 4 0 0 ----- [ anon ] 8f3fc000 10240 4 4 rw--- [ anon ] 8fdfc000 4 0 0 ----- [ anon ] 8fdfd000 12720 2468 2468 rw--- [ anon ] 90c00000 132 4 4 rw--- [ anon ] 90c21000 892 0 0 ----- [ anon ] 90d04000 4 0 0 ----- [ anon ] 90d05000 192 12 12 rw--- [ anon ] 90d35000 4 0 0 ----- [ anon ] 90d36000 10240 4 4 rw--- [ anon ] 91736000 4 0 0 ----- [ anon ] 91737000 10240 4 4 rw--- [ anon ] 92137000 4 0 0 ----- [ anon ] 92138000 10240 4 4 rw--- [ anon ] 92b38000 4 0 0 ----- [ anon ] 92b39000 10240 4 4 rw--- [ anon ] 93539000 4 0 0 ----- [ anon ] 9353a000 10240 4 4 rw--- [ anon ] 93f3a000 4 0 0 ----- [ anon ] 93f3b000 10240 4 4 rw--- [ anon ] 9493b000 4 0 0 ----- [ anon ] 9493c000 10240 4 4 rw--- [ anon ] 9533c000 4 0 0 ----- [ anon ] 9533d000 10240 4 4 rw--- [ anon ] 95d3d000 4 0 0 ----- [ anon ] 95d3e000 10240 8 8 rw--- [ anon ] 9673e000 4 0 0 ----- [ anon ] 9673f000 133548 19940 19940 rw--- [ anon ] 9e9ab000 407108 406096 406096 rw--- [ anon ] b774b000 4 4 4 rw--- [ anon ] bfc28000 84 56 56 rw--- [ stack ] -------- ------- ------- ------- ------- total kB 752740 - - -
上面字段的含义:
EXTENDED AND DEVICE FORMAT FIELDS Address: start address of map Kbytes: size of map in kilobytes RSS: resident set size in kilobytes Dirty: dirty pages (both shared and private) in kilobytes Mode: permissions on map: read, write, execute, shared, private (copy on write) Mapping: file backing the map, or ’[ anon ]’ for allocated memory, or ’[ stack ]’ for the program stack Offset: offset into the file Device: device name (major:minor)
Mapping 字段说明是通过文件map使用的内存,还是[ anon ] 实际分配的内存,还是[ stack ] 栈使用的内存。
最后一行的 total KB 752740 的结果 和上面一条命令中 VSZ: 752744(虚拟内存) 是一致的。
5. 内存的调优
上面我们说到内存的瓶颈,主要看 swap out, page out, major page fault. 它们会极大的影响性能,特别是swap out. 所以内存调优也就是减少和防止它们的出现。
1)使用 hugepage 可以避免swap out; 但是 huagepage也是有代价的(导致page争用加剧),一定要事先测试;
2)修改 vm.swapingness, 优先flush disk cache,尽量减少page out 和 swap out; 但是flush disk cache又可能会导致 major page fault的产生;
3)disk cache刷新到磁盘有两个内核参数调节:vm.dirty_background_ratio=10; 默认值为10,表示disk cache中的脏页数量达到10%时,pdflush内核
线程会被调用,异步刷新disk cache; vm.dirty_ratio=20; 默认值20,表示disk cache中的脏页数量达到20%时,会进行同步的disk cache刷新,从而
会阻塞系统中应用进程的IO操作!我们可以调低vm.dirty_background_ratio来降低disk cache对mysql使用内存的影响,但是可能会增加磁盘IO;
4)加内存;

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











기계식 하드 드라이브나 SATA 솔리드 스테이트 드라이브의 경우 소프트웨어 실행 속도의 증가를 느낄 수 있지만 NVME 하드 드라이브라면 느끼지 못할 수도 있습니다. 1. 레지스트리를 데스크탑으로 가져와 새 텍스트 문서를 생성하고, 다음 내용을 복사하여 붙여넣은 후 1.reg로 저장한 후 마우스 오른쪽 버튼을 클릭하여 병합하고 컴퓨터를 다시 시작합니다. WindowsRegistryEditorVersion5.00[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SessionManager\MemoryManagement]"DisablePagingExecutive"=d

최근 샤오미는 스타일리시한 디자인은 물론 내부 및 외부 블랙 기술까지 갖춘 강력한 고급 스마트폰 샤오미 14Pro를 출시했다. 이 전화기는 최고의 성능과 뛰어난 멀티태스킹 기능을 갖추고 있어 사용자가 빠르고 원활한 휴대폰 경험을 즐길 수 있습니다. 하지만 성능은 메모리에 의해서도 영향을 받습니다. 많은 사용자들이 Xiaomi 14Pro의 메모리 사용량을 확인하는 방법을 알고 싶어하므로 한번 살펴보겠습니다. Xiaomi Mi 14Pro의 메모리 사용량을 확인하는 방법은 무엇입니까? Xiaomi 14Pro의 메모리 사용량을 확인하는 방법을 소개합니다. Xiaomi 14Pro 휴대폰의 [설정]에서 [애플리케이션 관리] 버튼을 엽니다. 설치된 모든 앱 목록을 보려면 목록을 탐색하고 보려는 앱을 찾은 다음 클릭하여 앱 세부 정보 페이지로 들어갑니다. 신청 세부정보 페이지에서

초보 사용자가 컴퓨터를 구입할 때 8g과 16g 컴퓨터 메모리의 차이점이 궁금할 것입니다. 8g 또는 16g을 선택해야 합니까? 이 문제에 대해 오늘 편집자가 자세히 설명해 드리겠습니다. 컴퓨터 메모리 8g과 16g 사이에 큰 차이가 있나요? 1. 일반 가족이나 일반 업무의 경우 8G 런닝 메모리가 요구 사항을 충족할 수 있으므로 사용 중에는 8g와 16g 사이에 큰 차이가 없습니다. 2. 게임 매니아가 사용하는 경우 현재 대규모 게임은 기본적으로 6g부터 시작하며, 8g가 최소 기준입니다. 현재 화면이 2k인 경우 해상도가 높아진다고 프레임 속도 성능이 높아지는 것은 아니므로 8g와 16g 사이에는 큰 차이가 없습니다. 3. 오디오 및 비디오 편집 사용자의 경우 8g와 16g 사이에는 분명한 차이가 있습니다.

보고서에 따르면 삼성전자 김대우 상무는 2024년 한국마이크로전자패키징학회 연차총회에서 삼성전자가 16단 하이브리드 본딩 HBM 메모리 기술 검증을 완료할 것이라고 밝혔다. 해당 기술은 기술검증을 통과한 것으로 알려졌다. 보고서는 이번 기술 검증이 향후 몇 년간 메모리 시장 발전의 초석을 마련하게 될 것이라고 밝혔다. 김대우 사장은 삼성전자가 하이브리드 본딩 기술을 바탕으로 16단 적층 HBM3 메모리를 성공적으로 제조했다고 밝혔다. ▲이미지 출처 디일렉, 아래와 동일 하이브리드 본딩은 DRAM 메모리층 사이에 범프를 추가할 필요 없이 상하층 구리를 직접 연결하는 방식이다.

21일 본 사이트의 소식에 따르면 마이크론은 분기별 재무보고서를 발표한 뒤 컨퍼런스콜을 가졌다. 컨퍼런스에서 Micron CEO Sanjay Mehrotra는 기존 메모리에 비해 HBM이 훨씬 더 많은 웨이퍼를 소비한다고 말했습니다. 마이크론은 동일한 노드에서 동일한 용량을 생산할 때 현재 가장 발전된 HBM3E 메모리는 표준 DDR5보다 3배 더 많은 웨이퍼를 소비하며 성능이 향상되고 패키징 복잡성이 심화됨에 따라 향후 HBM4 이 비율은 더욱 높아질 것으로 예상된다고 밝혔습니다. . 이 사이트의 이전 보고서를 참조하면 이러한 높은 비율은 부분적으로 HBM의 낮은 수율 때문입니다. HBM 메모리는 다층 DRAM 메모리 TSV 연결로 적층됩니다. 한 층에 문제가 있다는 것은 전체가 의미합니다.

5월 6일 이 웹사이트의 소식에 따르면 Lexar는 Ares Wings of War 시리즈 DDR57600CL36 오버클럭 메모리를 출시했습니다. 16GBx2 세트는 5월 7일 0시에 예약 판매가 가능하며 가격은 50위안입니다. 1,299위안. Lexar Wings of War 메모리는 Hynix A-die 메모리 칩을 사용하고 Intel XMP3.0을 지원하며 다음 두 가지 오버클러킹 사전 설정을 제공합니다. 7600MT/s: CL36-46-46-961.4V8000MT/s: CL38-48-49 -1001.45V 방열 측면에서는 이 메모리 세트에는 1.8mm 두께의 올 알루미늄 방열 조끼가 장착되어 있으며 PMIC 독점 열 전도성 실리콘 그리스 패드가 장착되어 있습니다. 메모리는 8개의 고휘도 LED 비드를 사용하고 13개의 RGB 조명 모드를 지원합니다.

3일 홈페이지 보도에 따르면 국내 언론 에트뉴스는 어제(현지시간) 삼성전자와 SK하이닉스의 'HBM형' 적층구조 모바일 메모리 제품이 2026년 이후 상용화될 것이라고 보도했다. 소식통에 따르면 두 한국 메모리 거대 기업은 적층형 모바일 메모리를 미래 수익의 중요한 원천으로 여기고 'HBM형 메모리'를 스마트폰, 태블릿, 노트북으로 확장해 엔드사이드 AI에 전력을 공급할 계획이라고 전했다. 이 사이트의 이전 보도에 따르면 삼성전자 제품은 LPWide I/O 메모리라고 하며 SK하이닉스는 이 기술을 VFO라고 부른다. 두 회사는 팬아웃 패키징과 수직 채널을 결합하는 것과 거의 동일한 기술 경로를 사용했습니다. 삼성전자 LPWide I/O 메모리의 비트폭은 512이다.

6월 7일 이 사이트의 소식에 따르면 GEIL은 2024년 타이페이 국제 컴퓨터 쇼에서 최신 DDR5 솔루션을 출시했으며 선택할 수 있는 SO-DIMM, CUDIMM, CSODIMM, CAMM2 및 LPCAM2 버전을 제공했습니다. ▲사진출처: Wccftech 사진에서 볼 수 있듯이 진방이 전시한 CAMM2/LPCAMM2 메모리는 매우 컴팩트한 디자인을 채택해 최대 128GB의 용량과 최대 8533MT/s의 속도를 제공할 수 있다. 보조 냉각 없이 9000MT/s까지 오버클럭된 AMDAM5 플랫폼에서 안정적입니다. 보고서에 따르면 Jinbang의 2024 Polaris RGBDDR5 시리즈 메모리는 최대 8400을 제공할 수 있습니다.
