Python에서 이진 트리를 구현하는 방법
Python은 이진 트리를 구현합니다
Python은 이진 트리 노드 클래스를 정의하여 객체 지향 프로그래밍을 사용하여 이진 트리를 구현할 수 있습니다. 각 노드에는 데이터 요소, 왼쪽 및 오른쪽 하위 노드 포인터 및 노드 삽입, 노드 찾기, 노드 삭제 등과 같은 일부 작업 방법이 포함되어 있습니다.
다음은 간단한 이진 트리 구현 예입니다.
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data def find(self, data): if data < self.data: if self.left is None: return str(data) + " Not Found" return self.left.find(data) elif data > self.data: if self.right is None: return str(data) + " Not Found" return self.right.find(data) else: return str(self.data) + " is found" def inorder_traversal(self, root): res = [] if root: res = self.inorder_traversal(root.left) res.append(root.data) res = res + self.inorder_traversal(root.right) return res
위 코드에서 Node 클래스는 데이터 요소 데이터와 왼쪽 및 오른쪽 하위 노드 포인터를 포함하는 노드를 정의합니다. insert 메소드는 이진 트리에 노드를 삽입하는 데 사용되고, find 메소드는 이진 트리에 특정 노드가 존재하는지 찾는 데 사용되고, inorder_traversal 메소드는 이진 트리의 순차 순회를 수행하는 데 사용됩니다.
이 Node 클래스를 사용하여 이진 트리를 만드는 방법은 다음과 같습니다.
root = Node(50) root.insert(30) root.insert(20) root.insert(40) root.insert(70) root.insert(60) root.insert(80) # 查找节点 print(root.find(70)) # Output: 70 is found print(root.find(90)) # Output: 90 Not Found # 中序遍历 print(root.inorder_traversal(root)) # Output: [20, 30, 40, 50, 60, 70, 80]
위 코드에서 루트 노드 루트가 먼저 생성된 다음 삽입 메서드를 사용하여 노드를 트리에 삽입하고 마지막으로 find 메서드를 사용합니다. 노드를 찾는 데 사용되고 inorder_traversal 메소드가 사용됩니다. 이진 트리의 중위 순회를 수행합니다.
삽입, 검색 및 순회 방법 외에도 이진 트리에는 노드 삭제, 이진 검색 트리인지 확인, 트리 깊이 계산 등과 같은 다른 작업 방법도 있습니다. 다음은 좀 더 완전한 이진 트리 샘플 코드입니다.
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data def find(self, data): if data < self.data: if self.left is None: return None return self.left.find(data) elif data > self.data: if self.right is None: return None return self.right.find(data) else: return self def delete(self, data): if self is None: return self if data < self.data: self.left = self.left.delete(data) elif data > self.data: self.right = self.right.delete(data) else: if self.left is None: temp = self.right self = None return temp elif self.right is None: temp = self.left self = None return temp temp = self.right.minimum() self.data = temp.data self.right = self.right.delete(temp.data) return self def minimum(self): if self.left is None: return self return self.left.minimum() def is_bst(self): if self.left: if self.left.data > self.data or not self.left.is_bst(): return False if self.right: if self.right.data < self.data or not self.right.is_bst(): return False return True def height(self, node): if node is None: return 0 left_height = self.height(node.left) right_height = self.height(node.right) return max(left_height, right_height) + 1 def inorder_traversal(self, root): res = [] if root: res = self.inorder_traversal(root.left) res.append(root.data) res = res + self.inorder_traversal(root.right) return res
이 예에서는 지정된 노드를 삭제하는 삭제 메서드를 추가했습니다. 현재 트리는 트리의 깊이를 계산하는 이진 포크 검색 트리입니다.
다음 코드를 사용하여 새 방법을 테스트할 수 있습니다.
# 创建二叉树 root = Node(50) root.insert(30) root.insert(20) root.insert(40) root.insert(70) root.insert(60) root.insert(80) # 删除节点 print("Deleting node 20:") root.delete(20) print(root.inorder_traversal(root)) # 判断是否为二叉搜索树 print("Is it a BST?:", root.is_bst()) # 计算树的深度 print("Tree height:", root.height(root))
이러한 방식으로 비교적 완전한 이진 트리 구현을 완료했으며 Python에서 객체 지향 프로그래밍 아이디어를 사용하여 데이터 구조를 구현하는 방법도 시연했습니다.
마지막으로 전체 이진 트리 클래스 구현 코드가 첨부됩니다.
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data def find(self, data): if data < self.data: if self.left is None: return None return self.left.find(data) elif data > self.data: if self.right is None: return None return self.right.find(data) else: return self def delete(self, data): if self is None: return self if data < self.data: self.left = self.left.delete(data) elif data > self.data: self.right = self.right.delete(data) else: if self.left is None: temp = self.right self = None return temp elif self.right is None: temp = self.left self = None return temp temp = self.right.minimum() self.data = temp.data self.right = self.right.delete(temp.data) return self def minimum(self): if self.left is None: return self return self.left.minimum() def is_bst(self): if self.left: if self.left.data > self.data or not self.left.is_bst(): return False if self.right: if self.right.data < self.data or not self.right.is_bst(): return False return True def height(self, node): if node is None: return 0 left_height = self.height(node.left) right_height = self.height(node.right) return max(left_height, right_height) + 1 def inorder_traversal(self, root): res = [] if root: res = self.inorder_traversal(root.left) res.append(root.data) res = res + self.inorder_traversal(root.right) return res if __name__ == '__main__': # 创建二叉树 root = Node(50) root.insert(30) root.insert(20) root.insert(40) root.insert(70) root.insert(60) root.insert(80) # 删除节点 print("Deleting node 20:") root.delete(20) print(root.inorder_traversal(root)) # 判断是否为二叉搜索树 print("Is it a BST?:", root.is_bst()) # 计算树的深度 print("Tree height:", root.height(root))
코드를 실행한 후 다음 출력을 얻을 수 있습니다.
노드 20 삭제:
[30, 40, 50, 60, 70, 80]
BST인가요?: True
트리 높이: 3
이 예제에는 삽입, 검색, 삭제, 순회, 이진 검색 트리인지 확인하고 트리 깊이 계산이 포함됩니다.
위 내용은 Python에서 이진 트리를 구현하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.
