Python에서 일반적으로 사용되는 함수는 무엇입니까?
shutil 是 Python 中的高级文件操作模块,与os模块形成互补的关系,os主要提供了文件或文件夹的新建、删除、查看等方法,还提供了对文件以及目录的路径操作。shutil模块提供了移动、复制、 压缩、解压等操作,恰好与os互补,共同一起使用,基本能完成所有文件的操作。是一个非常重要的模块。
#加载包 import shutil #查看包中的所有方法 print(dir(shutil)) [ 'chown', 'collections', 'copy', 'copy2', 'copyfile', 'copyfileobj', 'copymode', 'copystat', 'copytree', 'disk_usage', 'errno', 'fnmatch', 'get_archive_formats', 'get_terminal_size', 'get_unpack_formats', 'getgrnam', 'getpwnam', 'ignore_patterns', 'make_archive', 'move', 'nt', 'os', 'register_archive_format', 'register_unpack_format', 'rmtree', 'stat', 'sys', 'unpack_archive', 'unregister_archive_format', 'unregister_unpack_format', 'which']
01、copy()
描述:复制文件
语法:shutil.copy(fsrc,path),返回值:返回复制之后的路径
fsrc:源文件
path:目标地址
shutil.copy('test.csv','C:/Users/zhengxiang.wzx/Desktop/') 'C:/Users/zhengxiang.wzx/Desktop/test.csv'
02、copy2()
描述:复制文件和状态信息
语法:shutil.copy(fsrc,path),返回值:返回复制之后的路径
fsrc:源文件
path:目标地址
shutil.copy2('test.csv','C:/Users/zhengxiang.wzx/Desktop/') 'C:/Users/zhengxiang.wzx/Desktop/test.csv'
03、copyfileobj()
描述:将一个文件的内容拷贝到另一个文件中,如果目标文件本身就有内容,来源文件的内容会把目标文件的内容覆盖掉。如果文件不存在它会自动创建一个。
语法:shutil.copyfileobj(fsrc, fdst[, length=16*1024])
fsrc:源文件
fdst:复制至fdst文件
length:缓冲区大小,即fsrc每次读取的长度
import shutil f1 = open('file.txt','r') f2 = open('file_copy.txt','w+') shutil.copyfileobj(f1,f2,length=16*1024)
04、copyfile()
描述:将一个文件的内容拷贝到另一个文件中,目标文件无需存在
语法:shutil.copyfile(src, dst,follow_symlinks)
src:源文件路径
dst:复制至dst文件,若dst文件不存在,将会生成一个dst文件;若存在将会被覆盖
follow_symlinks:设置为True时,若src为软连接,则当成文件复制;如果设置为False,复制软连接。默认为True。
import shutil f1 = open('file.txt','r') f2 = open('file_copy.txt','w+') shutil.copyfileobj(f1,f2,length=16*1024)
05、copytree()
描述:复制整个目录文件,不需要的文件类型可以不复制
语法:shutil.copytree(oripath, despath, ignore= shutil.ignore_patterns(".xls", ".doc"))
参数:
oripath : “来源路径”
despath : “目标路径”
ignore : shutil.ignore_patterns() 是对内容进行忽略筛选,将对应的内容进行忽略。
import shutil,os path2 = os.path.join(os.getcwd(),"kaggle") path2 'C:\\Users\\wuzhengxiang\\Desktop\\Python知识点总结\\kaggle' #bbb与ccc文件夹都可以不存在,会自动创建 path3 = os.path.join(os.getcwd(),"bbb","ccc") path3 'C:\\Users\\wuzhengxiang\\Desktop\\Python知识点总结\\bbb\\ccc' # 将"abc.txt","bcd.txt"忽略,不复制 shutil.copytree(path2,path3,ignore=shutil.ignore_patterns("abc.txt","bcd.txt"))
06、copymode()
描述:拷贝权限,前提是目标文件存在,不然会报错。将src文件权限复制至dst文件。文件内容,所有者和组不受影响
语法:shutil.copymode(src,dst)
src:源文件路径
dst:将权限复制至dst文件,dst路径必须是真实的路径,并且文件必须存在,否则将会报文件找不到错误
follow_symlinks:设置为False时,src, dst皆为软连接,可以复制软连接权限,如果设置为True,则当成普通文件复制权限。默认为True。Python3新增参数
shutil.copymode("file_0.csv","file_1.csv")
07、move()
描述:移动文件或文件夹
语法:shutil.move(src, dst)
os.chdir('C:/Users/wuzhengxiang/Desktop/Python知识点总结') os.getcwd() shutil.move('file_1.csv', 'C:/Users/wuzhengxiang/Desktop/股票数据分析') 'C:/Users/wuzhengxiang/Desktop/股票数据分析\\file_1.csv'
08、disk_usage()
描述:查看磁盘使用信息,计算磁盘总存储,已用存储,剩余存储信息。
语法:shutil.disk_usage(‘盘符’)
返回值:元组
shutil.disk_usage('D:') usage(total=151199412224, used=41293144064, free=109906268160) total,总存储:151199412224/1024/1024/1024=140GB used,已使用:41293144064/1024/1024/1024=38GB free,剩余容量:109906268160/1024/1024/1024=102GB
09、 make_archive()
描述:压缩打包
语法:make_archive(base_name, format, root_dir=None, base_dir=None, verbose=0,dry_run=0, owner=None, group=None, logger=None)
压缩打包
base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径
format: 压缩或者打包格式 “zip”, “tar”, "bztar"or “gztar”
root_dir : 将哪个目录或者文件打包(也就是源文件)
#把当前目录下的file_1.csv打包压缩 shutil.make_archive('file_1.csv','gztar',root_dir='C:/Users/wuzhengxiang/Desktop/股票数据分析') 'C:\\Users\\wuzhengxiang\\Desktop\\股票数据分析\\file_1.csv.tar.gz'
09、 get_archive_formats()
描述: 获取支持的压缩文件格式。目前支持的有:tar、zip、gztar、bztar。在Python3还多支持一种格式xztar
在学习Python的过程中,往往因为没有资料或者没人指导从而导致自己不想学下去了,因此我特意准备了个群 827513319 ,群里有大量的PDF书籍、教程都给大家免费使用!不管是学习到哪个阶段的小伙伴都可以获取到自己相对应的资料!
语法:unpack_archive(filename, extract_dir=None, format=None)
filename:文件路径
extract_dir:解压至的文件夹路径。文件夹可以不存在,会自动生成
format:解压格式,默认为None,会根据扩展名自动选择解压格式
import shutil,os zip_path = os.path.join(os.getcwd(),"file_1.csv.tar") extract_dir = os.path.join(os.getcwd(),"aaa") shutil.unpack_archive(zip_path, extract_dir)
10、rmtree()
描述:递归的去删除文件
语法:shutil.rmtree(path[, ignore_errors[, onerror]])
#删除文件夹shutil.rmtree('C:/Users/wuzhengxiang/Desktop/Python知识点总结/test2')
위 내용은 Python에서 일반적으로 사용되는 함수는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

CentOS 시스템에서 Pytorch 모델을 효율적으로 교육하려면 단계가 필요 하며이 기사는 자세한 가이드를 제공합니다. 1. 환경 준비 : 파이썬 및 종속성 설치 : CentOS 시스템은 일반적으로 파이썬을 사전 설치하지만 버전은 더 오래 될 수 있습니다. YUM 또는 DNF를 사용하여 Python 3 및 Upgrade Pip : Sudoyumupdatepython3 (또는 SudodnfupdatePython3), PIP3INSTALL-UPGRADEPIP를 설치하는 것이 좋습니다. CUDA 및 CUDNN (GPU 가속도) : NVIDIAGPU를 사용하는 경우 Cudatool을 설치해야합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Centos에서 Pytorch 버전을 선택할 때 다음과 같은 주요 요소를 고려해야합니다. 1. Cuda 버전 호환성 GPU 지원 : NVIDIA GPU가 있고 GPU 가속도를 사용하려면 해당 CUDA 버전을 지원하는 Pytorch를 선택해야합니다. NVIDIA-SMI 명령을 실행하여 지원되는 CUDA 버전을 볼 수 있습니다. CPU 버전 : GPU가 없거나 GPU를 사용하지 않으려면 Pytorch의 CPU 버전을 선택할 수 있습니다. 2. 파이썬 버전 Pytorch

Centos 시스템에서 Pytorch 데이터를 효율적으로 처리하면 다음 단계가 필요합니다. 종속성 설치 : 먼저 시스템을 업데이트하고 Python3 및 PIP를 설치합니다. Sudoyumupdate-ysudoyuminstallpython3-ysudoyuminstallpython3-pip-y는 Centos 버전 및 GPU 모델에 따라 Nvidia 공식 웹 사이트에서 Cudatoolkit 및 Cudnn을 다운로드하고 설치합니다. 가상 환경 구성 (권장) : Conda를 사용하여 새로운 가상 환경을 생성하고 활성화합니다.

Centos Nginx를 설치하려면 다음 단계를 수행해야합니다. 개발 도구, PCRE-DEVEL 및 OPENSSL-DEVEL과 같은 종속성 설치. nginx 소스 코드 패키지를 다운로드하고 압축을 풀고 컴파일하고 설치하고 설치 경로를/usr/local/nginx로 지정하십시오. nginx 사용자 및 사용자 그룹을 만들고 권한을 설정하십시오. 구성 파일 nginx.conf를 수정하고 청취 포트 및 도메인 이름/IP 주소를 구성하십시오. Nginx 서비스를 시작하십시오. 종속성 문제, 포트 충돌 및 구성 파일 오류와 같은 일반적인 오류는주의를 기울여야합니다. 캐시를 켜고 작업자 프로세스 수 조정과 같은 특정 상황에 따라 성능 최적화를 조정해야합니다.
