목차
어떻게
실험
기술 주변기기 일체 포함 반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

May 04, 2023 pm 03:52 PM
모델

이 기사의 첫 번째 버전은 2018년 5월에 작성되었으며, 최근 2022년 12월에 출판되었습니다. 저는 지난 4년 동안 상사들로부터 많은 지지와 이해를 받았습니다.

(이번 경험이 논문을 제출하는 학생들에게도 조금이나마 용기가 되기를 바랍니다. 논문을 잘 쓰면 반드시 승리할 것입니다. 쉽게 포기하지 마세요!)

초기 버전 arXiv는: 반대 방향을 통한 쿼리 공격 기능: 강력한 이미지 검색을 향하여

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

문서 링크: https://link.springer.com/article/10.1007/s11263-022-01737-y

종이 백업 링크: https:/ /zdzheng.xyz/files/IJCV_Retrieval_Robustness_CameraReady.pdf

코드: https://github.com/layumi/U_turn

저자: Zhedong Zheng, Liang Zheng, Yi Yang 및 Fei Wu

이전 버전과 비교하여

  • 공식을 일부 조정했습니다.
  • 새로운 관련 작품 토론이 많이 추가되었습니다. 다중 규모 쿼리 공격/블랙박스 공격/세 가지 다른 각도에서 실험 방어
  • Food256, Market-1501, CUB, Oxford, Paris 및 기타 데이터 세트에 새로운 방법과 최신 시각화 방법을 추가합니다.
  • Cifar10의 Reid 및 WiderResNet에서 PCB 구조를 공격했습니다.
  • 실제 사례
  • 실제 사용 사례입니다. 예를 들어 Google이나 Baidu의 이미지 검색 시스템을 공격하여 빅뉴스(안개)를 만들고자 합니다. 개 이미지를 다운로드하고, 이미지넷 모델(또는 다른 모델, 바람직하게는 검색 시스템에 가까운 모델)을 통해 특징을 계산하고, 특징을 뒤집어서 적대적 노이즈 플러스를 계산할 수 있습니다(이 기사의 방법). 개로 돌아갑니다. 그런 다음 공격 후 개에 대한 이미지 검색 기능을 사용하면 Baidu와 Google의 시스템이 개 관련 콘텐츠를 반환할 수 없음을 알 수 있습니다. 우리 인간은 이것이 개의 이미지라는 것을 여전히 인식할 수 있습니다.

P.S. 저도 이미지 검색을 위해 Google을 공격해 보았습니다. 사람들은 여전히 ​​강아지 이미지라는 것을 인식할 수 있지만 Google은 종종 "모자이크" 관련 이미지를 반환합니다. Google은 딥 기능을 모두 사용하지 않거나 이미지넷 모델과 상당히 다르기 때문에 공격 후에는 다른 엔터티 카테고리(비행기 등) 대신 "모자이크"되는 경향이 있는 것으로 추정됩니다. 물론 모자이크는 어느 정도 성공했다고 볼 수 있습니다!

What

1. 이 글의 본래 의도는 사실 매우 간단합니다. 기존의 레이드 모델이나 랜드스케이프 검색 모델이 Recall-1 리콜율이 95%를 넘으니 공격 방법을 설계할 수 있을까요? 검색? 한편으로는 REID 모델의 배경을 살펴보고, 반면에 공격은 더 나은 방어를 위한 것입니다.

2. 검색 모델과 기존 분류 모델의 차이점은 검색 모델은 추출된 특징을 사용하여 결과를 비교(정렬)한다는 점인데, 이는 아래 표와 같이 기존 분류 모델과 상당히 다릅니다.

3. 검색 문제의 또 다른 특징은 개방형입니다. 이는 테스트 중 범주가 훈련 중에 종종 표시되지 않음을 의미합니다. 새끼 데이터 세트에 대해 잘 알고 계시다면, 검색 설정에서 훈련 중 훈련 세트에는 100종 이상의 새가 있고, 테스트 세트에는 100종 이상의 새가 중복되지 않습니다. 유형. 일치 및 순위 지정은 추출된 시각적 특징에만 전적으로 의존합니다. 따라서 일부 분류 공격 방법은 공격 시 카테고리 예측을 기반으로 한 기울기가 부정확한 경우가 많기 때문에 검색 모델을 공격하는 데 적합하지 않습니다. 반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

4. 검색 모델을 테스트할 때 데이터는 두 부분으로 나누어집니다. 하나는 이미지 쿼리이고 다른 하나는 이미지 갤러리입니다(데이터 양이 많아 일반적으로 액세스할 수 없음). 실제 타당성을 고려하여 우리의 방법은 주로 공격 쿼리의 이미지를 대상으로 잘못된 검색 결과를 유발합니다.

어떻게

1. 자연스러운 생각은 공격 특성입니다. 그렇다면 기능을 공격하는 방법은 무엇입니까? 교차 엔트로피 손실에 대한 이전 관찰을 바탕으로 합니다(큰 마진 소프트맥스 손실 기사 참조). 분류 손실을 사용할 때 특징 f는 방사형 분포를 갖는 경우가 많습니다. 이는 학습 시 특징과 마지막 분류 레이어의 가중치 W 사이에 cos 유사성을 계산하기 때문입니다. 아래 그림에서 볼 수 있듯이 모델을 학습한 후에는 동일한 카테고리의 샘플이 해당 카테고리의 W 근처에 분포되므로 f*W가 최대값에 도달할 수 있습니다.

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

2. 그래서 우리는 기능을 바꾸는 매우 간단한 방법을 생각해 냈습니다. 아래 그림에서 볼 수 있듯이 실제로 함께 시각화할 수 있는 두 가지 일반적인 분류 공격 방법이 있습니다. 예를 들어 (a)는 -Wmax를 제공하여 분류 확률이 가장 높은 범주(예: Fast Gradient)를 억제하는 것이므로 (b)와 같이 역 Wmax를 따라 빨간색 그라데이션 전파 방향이 있습니다. 가능성이 가장 낮은 범주를 억제하는 방법입니다. 가능한 범주의 기능이 표시되므로(예: 가능성이 가장 낮음) 빨간색 그라데이션이 Wmin을 따릅니다.

3. 이 두 가지 분류 공격 방법은 물론 전통적인 분류 문제에 매우 직접적이고 효과적입니다. 그러나 검색 문제의 테스트 세트는 모두 보이지 않는 범주(보이지 않는 새 종)이므로 자연 f의 분포는 Wmax 또는 Wmin에 꼭 맞지 않습니다. 따라서 우리의 전략은 매우 간단합니다. 그림 (c)와 같이 f를 -f로 이동합니다.

이런 식으로 특성 매칭 단계에서 순위가 ​​높은 결과는 이상적으로는 -f와의 cos 유사도를 1에 가까운 것부터 -1에 가까운 것으로 계산할 때 가장 낮은 순위로 지정됩니다.

공격 검색 정렬 효과를 달성했습니다.

4. 작은 확장. 검색 문제에서는 쿼리 확대를 위해 멀티 스케일을 사용하는 경우도 많기 때문에 이 경우 공격 효과를 유지하는 방법도 연구했습니다. (가장 어려운 점은 크기 조정 작업이 작지만 중요한 불안감을 완화할 수 있다는 것입니다.)

사실 이를 처리하는 방법도 모델 앙상블과 마찬가지로 매우 간단합니다. 여러 척도의 적대적 기울기를 평균화합니다. 앙상블로요.

실험

1. 3개의 데이터 세트와 3개의 지표에서 가로 좌표의 엡실론인 지터 진폭을 고정하고 동일한 지터 진폭에서 검색 모델이 더 많은 실수를 하게 만드는 방법을 비교했습니다. 우리의 방법은 노란색 선이 모두 아래쪽에 있다는 것입니다. 이는 공격 효과가 더 좋다는 것을 의미합니다.

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

2 동시에 5개 데이터 세트(Food, CUB, Market, Oxford, Paris)에 대한 정량적 실험 결과도 제공합니다. 모델 메커니즘을 시연하면서 Cifar10의 분류 모델을 공격하려고 했습니다.

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.기능의 마지막 레이어를 변경하는 우리의 전략에도 상위 5위권에 대한 강력한 억제력이 있음을 알 수 있습니다. 상위 1위의 경우 후보군을 뽑지 않았기 때문에 최소 가능성보다는 약간 낮겠지만 거의 비슷합니다.

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

4. 블랙박스 공격

또한 ResNet50에서 생성된 공격 샘플을 사용하여 블랙박스 DenseNet 모델을 공격하려고 했습니다(이 모델의 매개변수는 우리가 사용할 수 없습니다). 더 나은 마이그레이션 공격 능력도 달성할 수 있는 것으로 나타났습니다.

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

5. 반격

우리는 방어 모델을 훈련하기 위해 온라인 적대 훈련을 사용합니다. 우리는 이 모델이 여전히 새로운 화이트박스 공격을 수용할 수 없지만 완전히 무방비인 모델보다 작은 불안감(점을 덜 떨어뜨리는)에서 더 안정적이라는 것을 발견했습니다.

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

6. 특징 이동 시각화

이것도 제가 가장 좋아하는 실험입니다. Cifar10을 사용하여 마지막 분류 레이어의 차원을 2로 변경하여 분류 레이어의 특징 변화를 플롯합니다.

아래 그림과 같이 지터 진폭 엡실론이 증가함에 따라 샘플의 특성이 천천히 "돌아가는" 것을 볼 수 있습니다. 예를 들어 대부분의 주황색 기능이 반대쪽으로 이동했습니다.

반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.

위 내용은 반전 기능으로 인해 re-id 모델이 88.54%에서 0.15%로 변경됩니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. 중국의 기능은 GPT-4와 비슷하며 가격은 GPT-4-Turbo의 거의 1%에 불과합니다. 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. 중국의 기능은 GPT-4와 비슷하며 가격은 GPT-4-Turbo의 거의 1%에 불과합니다. May 07, 2024 pm 04:13 PM

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI가 수학적 연구를 전복시킨다! 필즈상 수상자이자 중국계 미국인 수학자, Terence Tao가 좋아하는 11개 논문 발표 | AI가 수학적 연구를 전복시킨다! 필즈상 수상자이자 중국계 미국인 수학자, Terence Tao가 좋아하는 11개 논문 발표 | Apr 09, 2024 am 11:52 AM

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Apr 01, 2024 pm 07:46 PM

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

MLP를 대체하는 KAN은 오픈소스 프로젝트를 통해 컨볼루션으로 확장되었습니다. MLP를 대체하는 KAN은 오픈소스 프로젝트를 통해 컨볼루션으로 확장되었습니다. Jun 01, 2024 pm 10:03 PM

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

시계열 예측 + NLP 대규모 모델에 대한 새로운 작업: 시계열 예측을 위한 암시적 프롬프트 자동 생성 시계열 예측 + NLP 대규모 모델에 대한 새로운 작업: 시계열 예측을 위한 암시적 프롬프트 자동 생성 Mar 18, 2024 am 09:20 AM

오늘 저는 시계열 예측 성능을 향상시키기 위해 잠재 공간에서 시계열 데이터를 대규모 자연어 처리(NLP) 모델과 정렬하는 방법을 제안하는 코네티컷 대학의 최근 연구 작업을 공유하고 싶습니다. 이 방법의 핵심은 잠재 공간 힌트(프롬프트)를 사용하여 시계열 예측의 정확성을 높이는 것입니다. 논문 제목: S2IP-LLM: SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting 다운로드 주소: https://arxiv.org/pdf/2403.05798v1.pdf 1. 큰 문제 배경 모델

공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! 공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! May 06, 2024 pm 04:13 PM

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

DualBEV: BEVFormer 및 BEVDet4D를 크게 능가하는 책을 펼치세요! DualBEV: BEVFormer 및 BEVDet4D를 크게 능가하는 책을 펼치세요! Mar 21, 2024 pm 05:21 PM

본 논문에서는 자율 주행에서 다양한 시야각(예: 원근 및 조감도)에서 객체를 정확하게 감지하는 문제, 특히 원근(PV) 공간에서 조감(BEV) 공간으로 기능을 효과적으로 변환하는 방법을 탐구합니다. VT(Visual Transformation) 모듈을 통해 구현됩니다. 기존 방법은 크게 2D에서 3D로, 3D에서 2D로 변환하는 두 가지 전략으로 나뉩니다. 2D에서 3D로의 방법은 깊이 확률을 예측하여 조밀한 2D 특징을 개선하지만, 특히 먼 영역에서는 깊이 예측의 본질적인 불확실성으로 인해 부정확성이 발생할 수 있습니다. 3D에서 2D로의 방법은 일반적으로 3D 쿼리를 사용하여 2D 기능을 샘플링하고 Transformer를 통해 3D와 2D 기능 간의 대응에 대한 주의 가중치를 학습하므로 계산 및 배포 시간이 늘어납니다.

See all articles