데이터 베이스 MySQL 튜토리얼 SQL Limit 用法_MySQL

SQL Limit 用法_MySQL

May 31, 2016 am 08:46 AM

Limit 中第一个参数为offset。

在MySQL 中limit是按顺序取数据的,所以要随机取数据时,使用 order by random();


Netezza: 使用random() 函数

select setseed(random());

select * from table order by random() limit 100;


Mysql  使用Rand() 函数。

----------------------------------------------------------------------------



SELECT FROM table  LIMIT [offset,] rows rows OFFSET offset    mysql> SELECT FROM table LIMIT 5,10 // 检索记录行 6-15
 
//为了检索从某一个偏移量到记录集的结束所有的记录行,可以指定第二个参数为 -1: 
 mysql> SELECT FROM table LIMIT 95,-1// 检索记录行 96-last.
 
 //如果只给定一个参数,它表示返回最大的记录行数目: 
 mysql> SELECT FROM table LIMIT 5    //检索前 5 个记录行
 
 //换句话说,LIMIT 等价于 LIMIT 0,n。select * from table LIMIT 5,10; #返回第6-15行数据
select * from table LIMIT 5; #返回前5行
select * from table LIMIT 0,5; #返回前5行

 

1、offset比较小的时候。
select * from yanxue8_visit limit 10,10

多次运行,时间保持在0.0004-0.0005之间

Select * From yanxue8_visit Where vid >=(
Select vid From yanxue8_visit Order By vid limit 10,1
) limit 10


多次运行,时间保持在0.0005-0.0006之间,主要是0.0006
结论:偏移offset较小的时候,直接使用limit较优。这个显然是子查询的原因。


2、offset大的时候。
select * from yanxue8_visit limit 10000,10
多次运行,时间保持在0.0187左右

Select * From yanxue8_visit Where vid >=(
Select vid From yanxue8_visit Order By vid limit 10000,1
) limit 10
多次运行,时间保持在0.0061左右,只有前者的1/3。可以预计offset越大,后者越优。


性能优化:

基于MySQL5.0中limit的高性能,我对数据分页也重新有了新的认识.

1.
Select * From cyclopedia Where ID>=(
Select Max(ID) From (
 Select ID From cyclopedia Order By ID limit 90001
) As tmp
) limit 100;

2.
Select * From cyclopedia Where ID>=(
Select Max(ID) From (
 Select ID From cyclopedia Order By ID limit 90000,1
) As tmp
) limit 100;

同样是取90000条后100条记录,第1句快还是第2句快?
第1句是先取了前90001条记录,取其中最大一个ID值作为起始标识,然后利用它可以快速定位下100条记录
第2句择是仅仅取90000条记录后1条,然后取ID值作起始标识定位下100条记录
第1句执行结果.100 rows in set (0.23) sec
第2句执行结果.100 rows in set (0.19) sec

很明显第2句胜出.看来limit好像并不完全像我之前想象的那样做全表扫描返回limit offset+length条记录,这样看来limit比起MS-SQL的Top性能还是要提高不少的.

其实第2句完全可以简化成

Select * From cyclopedia Where ID>=(
Select ID From cyclopedia limit 90000,1
)limit 100;

直接利用第90000条记录的ID,不用经过Max运算,这样做理论上效率因该高一些,但在实际使用中几乎看不到效果,因为本身定位ID返回的就是1条记录,Max几乎不用运作就能得到结果,但这样写更清淅明朗,省去了画蛇那一足.

可是,既然MySQL有limit可以直接控制取出记录的位置,为什么不干脆用Select * From cyclopedia limit 90000,1呢?岂不更简洁?
这 样想就错了,试了就知道,结果是:1 row in set (8.88) sec,怎么样,够吓人的吧,让我想起了昨天在4.1中比这还有过之的"高分".Select * 最好不要随便用,要本着用什么,选什么的原则, Select的字段越多,字段数据量越大,速度就越慢. 上面2种分页方式哪种都比单写这1句强多了,虽然看起来好像查询的次数更多一些,但实际上是以较小的代价换取了高效的性能,是非常值得的.

第1种方案同样可用于MS-SQL,而且可能是最好的.因为靠主键ID来定位起始段总是最快的.

Select Top 100 * From cyclopedia Where ID>=(
Select Top 90001 Max(ID) From (
 Select ID From cyclopedia Order By ID
) As tmp
)

但不管是实现方式是存贮过程还是直接代码中,瓶颈始终在于MS-SQL的TOP总是要返回前N个记录,这种情况在数据量不大时感受不深,但如果成百上千万,效率肯定会低下的.相比之下MySQL的limit就有优势的多,执行:
Select ID From cyclopedia limit 90000
Select ID From cyclopedia limit 90000,1
的结果分别是:
90000 rows in set (0.36) sec
1 row in set (0.06) sec
而MS-SQL只能用Select Top 90000 ID From cyclopedia 执行时间是390ms,执行同样的操作时间也不及MySQL的360ms.----------------------------------------------------------LIMIT 思考 PERCONA PERFORMANCE CONFERENCE 2009上,来自雅虎的几位工程师带来了一篇”Efficient Pagination Using MySQL“的报告,有很多亮点,本文是在原文基础上的进一步延伸。首先看一下分页的基本原理:mysql> explain SELECT * FROM message ORDER BY id DESC LIMIT 10000, 20G
***************** 1. row **************
id: 1
select_type: SIMPLE
table: message
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 10020
Extra:
1 row in set (0.00 sec)limit 10000,20的意思扫描满足条件的10020行,扔掉前面的10000行,返回最后的20行,问题就在这里,如果是limit 100000,100,需要扫描100100行,在一个高并发的应用里,每次查询需要扫描超过10W行,性能肯定大打折扣。文中还提到limit n性能是没问题的,因为只扫描n行。文中提到一种”clue”的做法,给翻页提供一些”线索”,比如还是SELECT * FROM message ORDER BY id DESC,按id降序分页,每页20条,当前是第10页,当前页条目id最大的是9527,最小的是9500,如果我们只提供”上一页”、”下一页”这样 的跳转(不提供到第N页的跳转),那么在处理”上一页”的时候SQL语句可以是:SELECT * FROM message WHERE id > 9527 ORDER BY id ASC LIMIT 20;处理”下一页”的时候SQL语句可以是:SELECT * FROM message WHERE id ”这样的链接方式,怎么办呢?如果LIMIT m,n不可避免的话,要优化效率,只有尽可能的让m小一下,我们扩展前面的”clue”做法,还是SELECT * FROM message ORDER BY id DESC,按id降序分页,每页20条,当前是第10页,当前页条目id最大的是9527,最小的是9500,比如要跳到第8页,我看的SQL语句可以这 样写:SELECT * FROM message WHERE id > 9527 ORDER BY id ASC LIMIT 20,20;跳转到第13页:SELECT * FROM message WHERE id SELECT FROM table  LIMIT [offset,] rows rows OFFSET offset    mysql> SELECT FROM table LIMIT 5,10;  // 检索记录行 6-15
 
//为了检索从某一个偏移量到记录集的结束所有的记录行,可以指定第二个参数为 -1: 
 mysql> SELECT FROM table LIMIT 95,-1; // 检索记录行 96-last.
 
 //如果只给定一个参数,它表示返回最大的记录行数目: 
 mysql> SELECT FROM table LIMIT 5;     //检索前 个记录行
 
 //换句话说,LIMIT 等价于 LIMIT 0,n。select * from table LIMIT 5,10; #返回第6-15行数据
select * from table LIMIT 5; #返回前5行
select * from table LIMIT 0,5; #返回前5行

 

1、offset比较小的时候。
select * from yanxue8_visit limit 10,10

多次运行,时间保持在0.0004-0.0005之间

Select * From yanxue8_visit Where vid >=(
Select vid From yanxue8_visit Order By vid limit 10,1
) limit 10


多次运行,时间保持在0.0005-0.0006之间,主要是0.0006
结论:偏移offset较小的时候,直接使用limit较优。这个显然是子查询的原因。


2、offset大的时候。
select * from yanxue8_visit limit 10000,10
多次运行,时间保持在0.0187左右

Select * From yanxue8_visit Where vid >=(
Select vid From yanxue8_visit Order By vid limit 10000,1
) limit 10
多次运行,时间保持在0.0061左右,只有前者的1/3。可以预计offset越大,后者越优。


性能优化:

基于MySQL5.0中limit的高性能,我对数据分页也重新有了新的认识.

1.
Select * From cyclopedia Where ID>=(
Select Max(ID) From (
 Select ID From cyclopedia Order By ID limit 90001
) As tmp
) limit 100;

2.
Select * From cyclopedia Where ID>=(
Select Max(ID) From (
 Select ID From cyclopedia Order By ID limit 90000,1
) As tmp
) limit 100;

同样是取90000条后100条记录,第1句快还是第2句快?
第1句是先取了前90001条记录,取其中最大一个ID值作为起始标识,然后利用它可以快速定位下100条记录
第2句择是仅仅取90000条记录后1条,然后取ID值作起始标识定位下100条记录
第1句执行结果.100 rows in set (0.23) sec
第2句执行结果.100 rows in set (0.19) sec

很明显第2句胜出.看来limit好像并不完全像我之前想象的那样做全表扫描返回limit offset+length条记录,这样看来limit比起MS-SQL的Top性能还是要提高不少的.

其实第2句完全可以简化成

Select * From cyclopedia Where ID>=(
Select ID From cyclopedia limit 90000,1
)limit 100;

直接利用第90000条记录的ID,不用经过Max运算,这样做理论上效率因该高一些,但在实际使用中几乎看不到效果,因为本身定位ID返回的就是1条记录,Max几乎不用运作就能得到结果,但这样写更清淅明朗,省去了画蛇那一足.

可是,既然MySQL有limit可以直接控制取出记录的位置,为什么不干脆用Select * From cyclopedia limit 90000,1呢?岂不更简洁?
这 样想就错了,试了就知道,结果是:1 row in set (8.88) sec,怎么样,够吓人的吧,让我想起了昨天在4.1中比这还有过之的"高分".Select * 最好不要随便用,要本着用什么,选什么的原则, Select的字段越多,字段数据量越大,速度就越慢. 上面2种分页方式哪种都比单写这1句强多了,虽然看起来好像查询的次数更多一些,但实际上是以较小的代价换取了高效的性能,是非常值得的.

第1种方案同样可用于MS-SQL,而且可能是最好的.因为靠主键ID来定位起始段总是最快的.

Select Top 100 * From cyclopedia Where ID>=(
Select Top 90001 Max(ID) From (
 Select ID From cyclopedia Order By ID
) As tmp
)

但不管是实现方式是存贮过程还是直接代码中,瓶颈始终在于MS-SQL的TOP总是要返回前N个记录,这种情况在数据量不大时感受不深,但如果成百上千万,效率肯定会低下的.相比之下MySQL的limit就有优势的多,执行:
Select ID From cyclopedia limit 90000
Select ID From cyclopedia limit 90000,1
的结果分别是:
90000 rows in set (0.36) sec
1 row in set (0.06) sec
而MS-SQL只能用Select Top 90000 ID From cyclopedia 执行时间是390ms,执行同样的操作时间也不及MySQL的360ms.----------------------------------------------------------LIMIT 思考 PERCONA PERFORMANCE CONFERENCE 2009上,来自雅虎的几位工程师带来了一篇”Efficient Pagination Using MySQL“的报告,有很多亮点,本文是在原文基础上的进一步延伸。首先看一下分页的基本原理:mysql> explain SELECT * FROM message ORDER BY id DESC LIMIT 10000, 20G
***************** 1. row **************
id: 1
select_type: SIMPLE
table: message
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 10020
Extra:
1 row in set (0.00 sec)limit 10000,20的意思扫描满足条件的10020行,扔掉前面的10000行,返回最后的20行,问题就在这里,如果是limit 100000,100,需要扫描100100行,在一个高并发的应用里,每次查询需要扫描超过10W行,性能肯定大打折扣。文中还提到limit n性能是没问题的,因为只扫描n行。文中提到一种”clue”的做法,给翻页提供一些”线索”,比如还是SELECT * FROM message ORDER BY id DESC,按id降序分页,每页20条,当前是第10页,当前页条目id最大的是9527,最小的是9500,如果我们只提供”上一页”、”下一页”这样 的跳转(不提供到第N页的跳转),那么在处理”上一页”的时候SQL语句可以是:SELECT * FROM message WHERE id > 9527 ORDER BY id ASC LIMIT 20;处理”下一页”的时候SQL语句可以是:SELECT * FROM message WHERE id ”这样的链接方式,怎么办呢?如果LIMIT m,n不可避免的话,要优化效率,只有尽可能的让m小一下,我们扩展前面的”clue”做法,还是SELECT * FROM message ORDER BY id DESC,按id降序分页,每页20条,当前是第10页,当前页条目id最大的是9527,最小的是9500,比如要跳到第8页,我看的SQL语句可以这 样写:SELECT * FROM message WHERE id > 9527 ORDER BY id ASC LIMIT 20,20;跳转到第13页:SELECT * FROM message WHERE id
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Alter Table 문을 사용하여 MySQL에서 테이블을 어떻게 변경합니까? Alter Table 문을 사용하여 MySQL에서 테이블을 어떻게 변경합니까? Mar 19, 2025 pm 03:51 PM

이 기사는 MySQL의 Alter Table 문을 사용하여 열 추가/드롭 테이블/열 변경 및 열 데이터 유형 변경을 포함하여 테이블을 수정하는 것에 대해 설명합니다.

MySQL 연결에 대한 SSL/TLS 암호화를 어떻게 구성합니까? MySQL 연결에 대한 SSL/TLS 암호화를 어떻게 구성합니까? Mar 18, 2025 pm 12:01 PM

기사는 인증서 생성 및 확인을 포함하여 MySQL에 대한 SSL/TLS 암호화 구성에 대해 설명합니다. 주요 문제는 자체 서명 인증서의 보안 영향을 사용하는 것입니다. [문자 수 : 159]

MySQL에서 큰 데이터 세트를 어떻게 처리합니까? MySQL에서 큰 데이터 세트를 어떻게 처리합니까? Mar 21, 2025 pm 12:15 PM

기사는 MySQL에서 파티셔닝, 샤딩, 인덱싱 및 쿼리 최적화를 포함하여 대규모 데이터 세트를 처리하기위한 전략에 대해 설명합니다.

인기있는 MySQL GUI 도구는 무엇입니까 (예 : MySQL Workbench, Phpmyadmin)? 인기있는 MySQL GUI 도구는 무엇입니까 (예 : MySQL Workbench, Phpmyadmin)? Mar 21, 2025 pm 06:28 PM

기사는 MySQL Workbench 및 Phpmyadmin과 같은 인기있는 MySQL GUI 도구에 대해 논의하여 초보자 및 고급 사용자를위한 기능과 적합성을 비교합니다. [159 자].

드롭 테이블 문을 사용하여 MySQL에서 테이블을 어떻게 드롭합니까? 드롭 테이블 문을 사용하여 MySQL에서 테이블을 어떻게 드롭합니까? Mar 19, 2025 pm 03:52 PM

이 기사에서는 Drop Table 문을 사용하여 MySQL에서 테이블을 떨어 뜨리는 것에 대해 설명하여 예방 조치와 위험을 강조합니다. 백업 없이는 행동이 돌이킬 수 없으며 복구 방법 및 잠재적 생산 환경 위험을 상세하게합니다.

외국 키를 사용하여 관계를 어떻게 표현합니까? 외국 키를 사용하여 관계를 어떻게 표현합니까? Mar 19, 2025 pm 03:48 PM

기사는 외국 열쇠를 사용하여 데이터베이스의 관계를 나타내고 모범 사례, 데이터 무결성 및 피할 수있는 일반적인 함정에 중점을 둡니다.

JSON 열에서 인덱스를 어떻게 생성합니까? JSON 열에서 인덱스를 어떻게 생성합니까? Mar 21, 2025 pm 12:13 PM

이 기사에서는 PostgreSQL, MySQL 및 MongoDB와 같은 다양한 데이터베이스에서 JSON 열에서 인덱스를 작성하여 쿼리 성능을 향상시킵니다. 특정 JSON 경로를 인덱싱하는 구문 및 이점을 설명하고 지원되는 데이터베이스 시스템을 나열합니다.

일반적인 취약점 (SQL 주입, 무차별 적 공격)에 대해 MySQL을 어떻게 보호합니까? 일반적인 취약점 (SQL 주입, 무차별 적 공격)에 대해 MySQL을 어떻게 보호합니까? Mar 18, 2025 pm 12:00 PM

기사는 준비된 명령문, 입력 검증 및 강력한 암호 정책을 사용하여 SQL 주입 및 무차별 적 공격에 대한 MySQL 보안에 대해 논의합니다 (159 자)

See all articles