엑셀을 구동하기 전에 먼저 파이썬과 관련 라이브러리를 설치해야 합니다. pip를 사용하여 다음 라이브러리를 설치하거나 전문 Python 클라이언트인 pycharm을 사용하여 Python 및 관련 라이브러리를 빠르게 설치할 수 있습니다.
pandas: Excel 파일 및 데이터 처리용
openpyxl: Excel 파일 읽기 및 쓰기용
xlrd: Excel 파일 읽기용
xlwt: Excel 파일 쓰기용
openpyxl은 Excel 2010 xlsx/xlsm/xltx/xltm 파일을 읽고 쓰기 위한 Python 라이브러리입니다. Excel 파일을 읽고 쓸 수 있으며 여러 워크시트, 차트 등을 지원합니다.
샘플 코드:
import openpyxl # 打开 Excel 文件 workbook = openpyxl.load_workbook('example.xlsx') # 获取所有工作表名 sheet_names = workbook.sheetnames print(sheet_names) # 获取指定工作表 sheet = workbook['Sheet1'] # 获取单元格数据 cell = sheet['A1'] print(cell.value) # 修改单元格数据 sheet['A1'] = 'Hello World' # 保存 Excel 文件 workbook.save('example.xlsx')
xlrd 및 xlwt는 각각 Excel 파일을 읽고 쓰는 데 사용되지만 Excel 2010 xlsx/xlsm/xltx/는 지원하지 않습니다. xltm 형식입니다.
샘플 코드:
import xlrd import xlwt # 打开 Excel 文件 workbook = xlrd.open_workbook('example.xls') # 获取所有工作表名 sheet_names = workbook.sheet_names() print(sheet_names) # 获取指定工作表 sheet = workbook.sheet_by_name('Sheet1') # 获取单元格数据 cell = sheet.cell(0, 0) print(cell.value) # 修改单元格数据 new_workbook = xlwt.Workbook() new_sheet = new_workbook.add_sheet('Sheet1') new_sheet.write(0, 0, 'Hello World') new_workbook.save('example.xls')
pandas는 데이터 분석을 위한 Python 라이브러리입니다. Excel 파일을 읽고 쓰는 데에도 사용할 수 있지만 Excel 2010 xlsx/xlsm은 지원하지 않습니다. /xltx/xltm 형식입니다.
샘플 코드:
import pandas as pd # 读取 Excel 文件 df = pd.read_excel('example.xls', sheet_name='Sheet1') # 获取单元格数据 value = df.iloc[0, 0] print(value) # 修改单元格数据 df.iloc[0, 0] = 'Hello World' df.to_excel('example.xls', index=False)
Pandas 라이브러리의 read_excel() 함수를 사용하여 Excel 파일을 읽습니다. 샘플 코드는 다음과 같습니다.
import pandas as pd # 读取Excel文件 df = pd.read_excel('example.xlsx')
Pandas 라이브러리의 to_excel() 함수를 사용하여 Excel 파일에 데이터를 씁니다. 샘플 코드는 다음과 같습니다.
import pandas as pd # 将数据写入Excel文件 df.to_excel('example.xlsx', index=False)
행 또는 열을 삽입하려면 pandas 라이브러리의 추가() 함수를 사용하세요. 샘플 코드는 다음과 같습니다.
import pandas as pd # 插入行 df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) df = df.append({'A': 4, 'B': 7}, ignore_index=True) # 插入列 df['C'] = [7, 8, 9, 10]
행 또는 열을 삭제하려면 pandas 라이브러리의 drop() 함수를 사용하세요. 샘플 코드는 다음과 같습니다.
import pandas as pd # 删除行 df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) df = df.drop(1) # 删除列 df = df.drop('B', axis=1)
pandas 라이브러리의 at() 함수 또는 .iat() 함수를 사용하여 셀 값을 수정합니다. 샘플 코드는 다음과 같습니다.
import pandas as pd # 修改单元格值 df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) df.at[1, 'B'] = 7 # 使用.iat()函数修改单元格值 df.iat[0, 1] = 8
pandas 라이브러리의 .loc() 함수 또는 .iloc() 함수를 사용하여 셀 값을 찾습니다. 샘플 코드는 다음과 같습니다.
import pandas as pd # 查找单元格值 df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) value = df.loc[1, 'B'] # 使用.iloc()函数查找单元格值 value = df.iloc[1, 1]
데이터를 정렬하려면 pandas 라이브러리의 sort_values() 함수를 사용하세요. 샘플 코드는 다음과 같습니다.
import pandas as pd # 对数据进行排序 df = pd.DataFrame({'A': [1, 3, 2], 'B': [4, 6, 5]}) df = df.sort_values(by='A')
데이터를 병합하려면 pandas 라이브러리의 merge() 함수를 사용하세요. 샘플 코드는 다음과 같습니다.
import pandas as pd # 合并数据 df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) df2 = pd.DataFrame({'A': [1, 2, 4], 'C': [7, 8, 9]}) df = pd.merge(df1, df2, on='A')
데이터를 그룹화하려면 pandas 라이브러리의 groupby() 함수를 사용하세요. 샘플 코드는 다음과 같습니다.
import pandas as pd # 分组数据 df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': [1, 2, 3, 4, 5, 6, 7, 8]}) grouped = df.groupby(['A', 'B'])
데이터 통계를 계산하려면 pandas 라이브러리의 explain() 함수를 사용하세요. 샘플 코드는 다음과 같습니다.
import pandas as pd # 计算数据统计量 df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) desc = df.describe()
위 내용은 Python을 사용하여 Excel을 자동화하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!