몬테카를로 시뮬레이션은 확률 통계에 기반한 방법으로, 무작위 시뮬레이션을 사용하여 사건이 발생할 확률을 계산합니다. 프로젝트 관리에서 몬테카를로 시뮬레이션은 프로젝트 기간, 비용 등 주요 지표의 확률 분포를 계산하는 데 주로 사용되어 프로젝트 관리자가 위험을 더 잘 관리하고 의사 결정을 내릴 수 있도록 돕습니다.
위 사진을 살펴보겠습니다. 이 사진은 활동 1, 활동 2, 활동 3의 세 가지 프로젝트 활동에 대한 몬테카를로 시뮬레이션입니다. 시뮬레이션은 세 가지 활동에 대한 3점 추정을 기반으로 합니다. 그런 다음 컴퓨터에 무작위 예산을 1,000,000번 수행하도록 요청하여 위의 그림을 얻었습니다.
위 그림에서 파란색 점선의 교차점을 예로 들어보겠습니다. 여기서 90%는 완료 확률 90%를 의미합니다. 이 지점에 해당하는 가로축은 19일에 가깝습니다. 즉, 컴퓨터 시뮬레이션을 100만 번이나 거친 셈이다. 19일 이내에 프로젝트를 완료할 확률은 90%입니다.
프로젝트를 해본 학생들은 고객이나 리더가 항상 우리가 더 빨리, 더 빨리, 더 빨리 가기를 원한다는 것을 모두 알고 있습니다. 리더는 19일은 없고 16일만 있다고 말했다. 이때 프로젝트 매니저로서 위의 차트를 통해 16일 동안 Y축에 해당하는 X축 값이 약 30% 정도 되는 것을 확인했습니다. 리더에게 물어보세요. 성공률은 30%에 불과합니다. 베팅하시겠습니까? 이것은 "과학적 운세"의 좋은 방법입니다. 핵심은 단순성과 이를 뒷받침하는 확률 이론입니다.
Python 구현
#!/usr/bin/env python # -*- coding:utf-8 -*- """ #----------------------------------------------------------------------------- # --- TDOUYA STUDIOS --- #----------------------------------------------------------------------------- # # @Project : di08-tdd-cdg-python-learning # @File : monte_carlo.py # @Author : tianxin.xp@gmail.com # @Date : 2023/3/12 18:22 # # 用Python实现蒙特卡洛模拟 # #--------------------------------------------------------------------------""" from datetime import datetime import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import FuncFormatter, MultipleLocator from scipy.stats import norm plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def to_percent(y, position): # 将纵轴用百分数表示 return '{:.0f}%'.format(100 * y) class Activity: """ 活动类,用于表示一个项目中的活动 Attributes: name (str): 活动名称 optimistic (float): 乐观时间 pessimistic (float): 悲观时间 most_likely (float): 最可能时间 """ def __init__(self, name, optimistic, pessimistic, most_likely): """ 初始化活动类 Args: name (str): 活动名称 optimistic (float): 乐观时间 pessimistic (float): 悲观时间 most_likely (float): 最可能时间 """ self.name = name self.optimistic = optimistic self.pessimistic = pessimistic self.most_likely = most_likely class PMP: """ PMP类用于进行项目管理中的相关计算: 方法: monte_carlo_simulation : 蒙特卡洛模拟试算,包括计算项目工期、平均值、标准差、绘制积累图和概率密度曲线等功能。 """ def __init__(self, activities): """ 初始化PMP类,传入活动列表。 :param activities: 活动列表,包括活动名称、乐观值、最可能值和悲观值。 """ self.activities = activities def monte_carlo_simulation(self, n): """ 进行蒙特卡洛模拟试算,计算项目工期、平均值、标准差、绘制积累图和概率密度曲线等。 :param n: 模拟次数。 """ # 模拟参数和变量 t = [] for activity in self.activities: t.append(np.random.triangular(activity.optimistic, activity.most_likely, activity.pessimistic, n)) # 计算项目工期 project_duration = sum(t) # 计算平均值和标准差 mean_duration = np.mean(project_duration) std_duration = np.std(project_duration) # 绘制积累图 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 10), gridspec_kw={'height_ratios': [3, 1]}) ax1.hist(project_duration, bins=50, density=True, alpha=0.7, color='blue', cumulative=True) ax1.yaxis.set_major_locator(MultipleLocator(0.1)) ax1.yaxis.set_major_formatter(FuncFormatter(to_percent)) ax1.set_ylabel('完成概率') ax1.set_title('PMP蒙特卡洛模拟试算', fontsize=20) # 绘制概率密度曲线 xmin, xmax = ax1.get_xlim() x = np.linspace(xmin, xmax, 100) p = norm.cdf(x, mean_duration, std_duration) ax1.plot(x, p, 'k', linewidth=2, drawstyle='steps-post') # 找到完成概率90%的点 x_90 = norm.ppf(0.9, mean_duration, std_duration) # 绘制垂线 ax1.axvline(x_90, linestyle='--', color='blue') ax1.axhline(0.9, linestyle='--', color='blue') # 隐藏右边和上方的坐标轴线 ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) # 添加表格 col_labels = ['活动名称', '乐观值', '最可能值', '悲观值'] cell_text = [[activity.name, activity.optimistic, activity.most_likely, activity.pessimistic] for activity in self.activities] table = ax2.table(cellText=cell_text, colLabels=col_labels, loc='center') # 设置表格的字体大小和行高 table.auto_set_font_size(False) table.set_fontsize(14) # # 设置表格的行高为1.5倍原来的高度 for i in range(len(self.activities) + 1): table._cells[(i, 0)].set_height(0.2) table._cells[(i, 1)].set_height(0.2) table._cells[(i, 2)].set_height(0.2) table._cells[(i, 3)].set_height(0.2) ax2.axis('off') # 调整子图之间的间距和边距 plt.subplots_adjust(hspace=0.3, bottom=0.05) # 保存图表 now = datetime.now().strftime('%Y%m%d%H%M%S') plt.savefig('monte_carlo_simulation_{}.png'.format(now)) # 显示图形 plt.show() if __name__ == '__main__': # 模拟参数和变量 n = 1000000 # 模拟次数 # 活动的工期分布 activities = [ Activity('活动1', 5, 10, 7), Activity('活动2', 3, 8, 5), Activity('活动3', 2, 6, 4) ] # 进行蒙特卡洛模拟 pmp = PMP(activities) pmp.monte_carlo_simulation(n)
위 내용은 Python에서 몬테카를로 시뮬레이션을 구현하는 방법 및 단계의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!