규칙은 다음과 같습니다. 왼손은 흰색 라켓을 제어하고, 라켓은 위아래로만 움직일 수 있습니다. 빨간색 원은 공이 파란색 테두리와 충돌합니다. 공이 노란색 영역에 들어가고 게임이 종료되면 아래의 분홍색 계산판에 각 공이 왼쪽과 오른쪽에 몇 번 맞았는지 기록됩니다.
pip install opencv_python==4.2.0.34 # 安装opencv pip install mediapipe # 安装mediapipe # pip install mediapipe --user #有user报错的话试试这个 pip install cvzone # 安装cvzone # 导入工具包 import cv2 import cvzone from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块
손 키 포인트 21개 좌표는 다음과 같습니다.
시작하기 전에 테이블 사진을 준비하고 공 사진, 라켓 사진. 그림은 PPT를 이용해서 그렸는데, 공과 라켓의 그림은 .png 형식으로 저장해야 합니다. 읽기 쉽도록 같은 폴더에 넣으세요.
(1) cvzone.HandTrackingModule.HandDetector()
손 키포인트 검출 방법vzone.HandTrackingModule.HandDetector()
手部关键点检测方法
参数:
mode: 默认为 False,将输入图像视为视频流。它将尝试在第一个输入图像中检测手,并在成功检测后进一步定位手的坐标。在随后的图像中,一旦检测到所有 maxHands 手并定位了相应的手的坐标,它就会跟踪这些坐标,而不会调用另一个检测,直到它失去对任何一只手的跟踪。这减少了延迟,非常适合处理视频帧。如果设置为 True,则在每个输入图像上运行手部检测,用于处理一批静态的、可能不相关的图像。
maxHands: 最多检测几只手,默认为 2
detectionCon: 手部检测模型的最小置信值(0-1之间),超过阈值则检测成功。默认为 0.5
minTrackingCon: 坐标跟踪模型的最小置信值 (0-1之间),用于将手部坐标视为成功跟踪,不成功则在下一个输入图像上自动调用手部检测。将其设置为更高的值可以提高解决方案的稳健性,但代价是更高的延迟。如果 mode 为 True,则忽略这个参数,手部检测将在每个图像上运行。默认为 0.5
它的参数和返回值类似于官方函数 mediapipe.solutions.hands.Hands()
MULTI_HAND_LANDMARKS: 被检测/跟踪的手的集合,其中每只手被表示为21个手部地标的列表,每个地标由x, y, z组成。
MULTI_HANDEDNESS: 被检测/追踪的手是左手还是右手的集合。每只手由label(标签)和score(分数)组成。 label 是 'Left' 或 'Right' 值的字符串。 score 是预测左右手的估计概率。
(2)cvzone.HandTrackingModule.HandDetector.findHands()
找到手部关键点并绘图
参数:
img: 需要检测关键点的帧图像,格式为BGR
draw: 是否需要在原图像上绘制关键点及识别框
flipType: 图像是否需要翻转,当视频图像和我们自己不是镜像关系时,设为True就可以了
返回值:
hands: 检测到的手部信息,由0或1或2个字典组成的列表。如果检测到两只手就是由两个字典组成的列表。字典中包含:21个关键点坐标(x,y,z),检测框左上坐标及其宽高,检测框中心点坐标,检测出是哪一只手。
img: 返回绘制了关键点及连线后的图像
(3)cv2.addWeighted()
MULTI_HAND_LANDMARKS와 유사합니다. 각 손은 21개의 손 랜드마크로 표시됩니다. 목록, 각 랜드마크 x, y, z로 구성됩니다.
MULTI_HANDEDNESS: 감지/추적되는 손이 왼쪽인지 오른쪽인지에 대한 컬렉션입니다. 각 손은 라벨과 점수로 구성됩니다. label은 '왼쪽' 또는 '오른쪽' 값을 갖는 문자열입니다. 점수는 왼손 또는 오른손을 예측할 추정 확률입니다.
(2) cvzone.HandTrackingModule.HandDetector.findHands()
손의 핵심 포인트를 찾아 그립니다.
매개변수:
img: 핵심 포인트를 감지해야 하는 프레임 이미지, 형식은 BGRdraw : 원본 이미지에 키 포인트 및 인식 프레임을 그려야 하는지 여부flipType: 이미지를 반전해야 하는지 여부 True반환 값:hands: 감지된 손 정보, 0개 또는 1개 또는 2개의 사전 목록. 두 손이 감지되면 두 개의 사전으로 구성된 목록입니다. 사전에는 21개의 키 포인트 좌표(x, y, z), 감지 프레임의 왼쪽 상단 좌표와 너비 및 높이, 감지 프레임의 중심점 좌표 및 감지된 손이 포함됩니다.
img: 핵심 포인트와 연결을 그린 후 이미지를 반환합니다🎜🎜(3)cv2.addWeighted()
이미지 융합🎜🎜두 이미지를 특정 비율에 따라 융합합니다. 두 이미지가 필요합니다. 이미지의 크기와 채널 수가 동일합니다🎜🎜두 이미지가 특정 비율로 융합됩니다: cv2.addWeighted(image 1, Weight 1, image 2, Weight 2, Brightness offset)🎜🎜y =에 해당 a x1 + b x2 + c , 여기서 a와 b는 무게를 나타내고 c는 밝기가 얼마나 밝아졌는지 나타냅니다🎜🎜2.2 코드 표시🎜🎜먼저 cv2.imread()의 매개 변수 cv2.IMREAD_UNCHANGED는 열기를 나타냅니다. 알파 채널을 포함하여 이미지를 원래 형식으로 유지합니다. 즉, 이미지를 변경하지 않고 엽니다. 이미지가 컬러이면 컬러로 읽혀지고, 이미지가 회색조이면 회색조로 읽혀집니다. 🎜🎜🎜🎜🎜이 부분은 주로 필기 부분 검출, 배경 이미지와 영상 프레임 이미지 융합🎜import cv2 import cvzone from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块 #(1)捕获摄像头 cap = cv2.VideoCapture(0) # 0代表电脑自带的摄像头 cap.set(3, 1280) # 读入的图像的宽 cap.set(4, 720) # 读入的图像的高 #(2)文件配置 # 导入所有需要对图片文件 imgDesk = cv2.imread('games/desk.jpg') # 球桌的图片 imgBall = cv2.imread('games/ball.png', cv2.IMREAD_UNCHANGED) # 球的图片 imgBlock1 = cv2.imread('games/block1', cv2.IMREAD_UNCHANGED) # 球拍的图片 imgBlock2 = cv2.imread('games/block2', cv2.IMREAD_UNCHANGED) # 球拍的图片 # 调整球桌图片的size imgDesk = cv2.resize(imgDesk, dsize=(1280,720)) #(3)参数设置 # 接收手部关键点识别的方法,最小手部检测模块置信度0.8,最多检测2只手 detector = HandDetector(detectionCon=0.8, maxHands=2) #(4)处理帧图像 while True: # 返回是否读取成功,以及读取后的帧图像 success, img = cap.read() # 每次执行读取一帧 # 图片翻转呈镜像关系,1代表左右翻转,0代表上下翻转 img = cv2.flip(img, flipCode=1) # 手部关键点检测,返回每个只手的信息和绘制后的图像 hands, img = detector.findHands(img, flipType=False) # 上面翻转过了这里就不用翻转了 # 将球桌图片和视频帧图像融合在一起, 两张图的shape要相同 # 给出每张图片的融合权重, 亮度偏置为0,这样就变成了半透明的显示形式 img = cv2.addWeighted(img, 0.3, imgDesk, 0.7, 0) #(5)添加桌球的图片,将imgBall放在球桌img的指定坐标位置 img = cvzone.overlayPNG(img, imgBall, (100,100)) # 图像展示 cv2.imshow('img', img) # 每帧滞留1ms后消失 k = cv2.waitKey(1) # ESC键退出程序 if k & 0XFF==27: break # 释放视频资源 cap.release() cv2.destroyAllWindows()
hand['bbox'] 中包含了手部检测框的左上角坐标和检测框的宽高,使用手掌中心点的 y 坐标来控制球拍的上下移动。由于两个球拍的shape是相同的,因此只要获取一个球拍的高度 h2 即可。使用掌心中点 y 坐标控制球拍中点的 y1 坐标,公式为:y1 = (y + h) // 2 - h2 // 2
接着使用 cvzone.overlayPNG() 就可以将球拍图片覆盖在原图片的指定区域,其中坐标参数是指覆盖区域的左上角坐标。固定横坐标,只上下移动。
(2)球移动
首先要规定球的移动速度 speedx, speedy = 10, 10 代表球每一帧沿x轴正方向移动10个像素,沿y轴正方向移动10个像素,那么球的初始合速度方向是沿图片的正右下角移动
如果球碰撞到了球桌的上下边框,就反弹。speedy = -speedy。代表x方向每帧移动的步长不变,y方向每帧移动的方向反转,即入射角等于出射角。
在上述代码中补充
import cv2 import cvzone import numpy as np from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块 #(1)捕获摄像头 cap = cv2.VideoCapture(0) # 0代表电脑自带的摄像头 cap.set(3, 1280) # 读入的图像的宽 cap.set(4, 720) # 读入的图像的高 #(2)文件配置 # 导入所有需要对图片文件 imgDesk = cv2.imread('games/desk.jpg') # 球桌的图片 imgBall = cv2.imread('games/ball.png', cv2.IMREAD_UNCHANGED) # 球的图片 imgBlock1 = cv2.imread('games/block1.png', cv2.IMREAD_UNCHANGED) # 球拍的图片 imgBlock2 = cv2.imread('games/block2.png', cv2.IMREAD_UNCHANGED) # 球拍的图片 # 调整球桌图片的size imgDesk = cv2.resize(imgDesk, dsize=(1280,720)) # 调整球拍的size imgBlock1 = cv2.resize(imgBlock1, dsize=(50,200)) imgBlock2 = cv2.resize(imgBlock2, dsize=(50,200)) #(3)参数设置 # 接收手部关键点识别的方法,最小手部检测模块置信度0.8,最多检测2只手 detector = HandDetector(detectionCon=0.8, maxHands=2) # 球的默认位置 ballpos = [100, 100] # 球的移动速度,每帧15个像素 speedx, speedy = 10, 10 #(4)处理帧图像 while True: # 返回是否读取成功,以及读取后的帧图像 success, img = cap.read() # 每次执行读取一帧 # 图片翻转呈镜像关系,1代表左右翻转,0代表上下翻转 img = cv2.flip(img, flipCode=1) # 手部关键点检测,返回每个只手的信息和绘制后的图像 hands, img = detector.findHands(img, flipType=False) # 上面翻转过了这里就不用翻转了 # 将球桌图片和视频帧图像融合在一起, 两张图的shape要相同 # 给出每张图片的融合权重, 亮度偏置为0,这样就变成了半透明的显示形式 img = cv2.addWeighted(img, 0.4, imgDesk, 0.6, 0) #(5)处理手部关键点,如果检测到手了就进行下一步 if hands: # 遍历每检测的2只手,获取每一只手的坐标 for hand in hands: # 获取手部检测框的左上坐标xy,宽高wh x, y, w, h = hand['bbox'] # 获取球拍的宽高 h2, w1 = imgBlock1.shape[0:2] # 球拍的中心y坐标,随着掌心移动 y1 = (y + h) // 2 - h2 // 2 # 如果检测到了左手 if hand['type'] == 'Left': # 左侧的球拍x轴固定,y坐标随左手掌间中点移动 img = cvzone.overlayPNG(img, imgBlock1, (55,y1)) # 如果检测到了右手 if hand['type'] == 'Right': # 右侧的球拍x轴固定,y坐标随右手掌间中点移动 img = cvzone.overlayPNG(img, imgBlock2, (1280-55,y1)) #(6)改变球的位置 # 如果球的y坐标在超出了桌面的上或下边框范围,调整移动方向 if ballpos[1] >= 600 or ballpos[1] <= 50: # y方向的速度调整为反方向,那么x方向和y方向的合速度方向调整了 speedy = -speedy ballpos[0] = ballpos[0] + speedx # 调整球的x坐标 ballpos[1] = ballpos[1] + speedy # 调整球的y坐标 #(5)添加桌球的图片,将imgBall放在球桌img的指定坐标位置 img = cvzone.overlayPNG(img, imgBall, ballpos) # 图像展示 cv2.imshow('img', img) # 每帧滞留1ms后消失 k = cv2.waitKey(1) # ESC键退出程序 if k & 0XFF==27: break # 释放视频资源 cap.release() cv2.destroyAllWindows()
效果图如下:
这一部分主要完成三项工作,第一是球拍击打到球,球需要反弹;第二是如果球进入黄色区域,游戏结束;第三是左右侧击球得分计数器。
(1)球拍击球
看到代码中的第(5)步,ballpos 代表球的左上角坐标(x,y),100 < ballpos[0] < 100+w1 代表球到了球拍横坐标区域范围内部了,y1 < ballpos[1] < y1+h2 代表球的y坐标在球拍y坐标内部,这时表明击球成功,speedx = -speedx 只改变沿x轴的速度方向,不改变沿y轴的速度方向。
(2)球进黄区,游戏结束
if ballpos[0] < 50 or ballpos[0] > 1150,如果球图片的左上坐标的 x 坐标,在黄区边缘,整个程序退出。当然也可以做一个游戏结束界面,我之前的博文里也有介绍,我偷个懒不写了。
(3)计数器
首先定义个变量初始化记录左右侧的击球次数 score = [0, 0],如果有一侧的球拍击中球,那么对应该侧计数加一。
上面代码是掌心控制球拍,这里改成食指指尖控制球拍中点移动。
import cv2 import cvzone from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块 #(1)捕获摄像头 cap = cv2.VideoCapture(0) # 0代表电脑自带的摄像头 cap.set(3, 1280) # 读入的图像的宽 cap.set(4, 720) # 读入的图像的高 #(2)文件配置 # 导入所有需要对图片文件 imgDesk = cv2.imread('games/desk.jpg') # 球桌的图片 imgBall = cv2.imread('games/ball.png', cv2.IMREAD_UNCHANGED) # 球的图片 imgBlock1 = cv2.imread('games/block1.png', cv2.IMREAD_UNCHANGED) # 球拍的图片 imgBlock2 = cv2.imread('games/block2.png', cv2.IMREAD_UNCHANGED) # 球拍的图片 # 调整球桌图片的size imgDesk = cv2.resize(imgDesk, dsize=(1280,720)) # 调整球拍的size imgBlock1 = cv2.resize(imgBlock1, dsize=(50,200)) imgBlock2 = cv2.resize(imgBlock2, dsize=(50,200)) #(3)参数设置 # 接收手部关键点识别的方法,最小手部检测模块置信度0.8,最多检测2只手 detector = HandDetector(detectionCon=0.8, maxHands=2) # 球的默认位置 ballpos = [100, 100] # 球的移动速度,每帧15个像素 speedx, speedy = 10, 10 # 记录是否游戏结束 gameover = False # 记录左右的击球数 score = [0, 0] #(4)处理帧图像 while True: # 返回是否读取成功,以及读取后的帧图像 success, img = cap.read() # 每次执行读取一帧 # 图片翻转呈镜像关系,1代表左右翻转,0代表上下翻转 img = cv2.flip(img, flipCode=1) # 手部关键点检测,返回每个只手的信息和绘制后的图像 hands, img = detector.findHands(img, flipType=False) # 上面翻转过了这里就不用翻转了 # 将球桌图片和视频帧图像融合在一起, 两张图的shape要相同 # 给出每张图片的融合权重, 亮度偏置为0,这样就变成了半透明的显示形式 img = cv2.addWeighted(img, 0.4, imgDesk, 0.6, 0) #(5)处理手部关键点,如果检测到手了就进行下一步 if hands: # 遍历每检测的2只手,获取每一只手的坐标 for hand in hands: # 获取食指坐标(x,y,z) x, y, z = hand['lmList'][8] # 获取球拍的宽高 h2, w1 = imgBlock1.shape[0:2] # 球拍的中心y坐标,随着掌心移动 y1 = y - h2 // 2 # 如果检测到了左手 if hand['type'] == 'Left': # 左侧的球拍x轴固定,y坐标随左手掌间中点移动 img = cvzone.overlayPNG(img, imgBlock1, (100,y1)) # 检查球是否被左球拍击中, 球的xy坐标是否在球拍xy坐标附近 if 100 < ballpos[0] < 100+w1 and y1 < ballpos[1] < y1+h2: # 满足条件代表球拍击中了,改变球的移动方向 speedx = -speedx # x方向设为反方向 # 得分加一 score[0] += 1 # 如果检测到了右手 if hand['type'] == 'Right': # 右侧的球拍x轴固定,y坐标随右手掌间中点移动 img = cvzone.overlayPNG(img, imgBlock2, (1150,y1)) # 检查球是否被右球拍击中 if 1050 < ballpos[0] < 1050+w1 and y1 < ballpos[1] < y1+h2: # 满足条件代表球拍击中了,改变球的移动方向 speedx = -speedx # x方向设为反方向 # 得分加一 score[1] += 1 #(6)检查球是否没接到,那么游戏结束 if ballpos[0] < 50 or ballpos[0] > 1150: gameover = True # 游戏结束,画面就不动了 if gameover is True: break # 游戏没结束就接下去执行 else: #(7)调整球的坐标 # 如果球的y坐标在超出了桌面的上或下边框范围,调整移动方向 if ballpos[1] >= 600 or ballpos[1] <= 50: # y方向的速度调整为反方向,那么x方向和y方向的合速度方向调整了 speedy = -speedy # 每一整都调整xy坐标 ballpos[0] = ballpos[0] + speedx # 调整球的x坐标 ballpos[1] = ballpos[1] + speedy # 调整球的y坐标 #(8)添加桌球的图片,将imgBall放在球桌img的指定坐标位置 img = cvzone.overlayPNG(img, imgBall, ballpos) #(9)显示记分板 cvzone.putTextRect(img, f'Left:{score[0]} and Right:{score[1]}', (400,710)) #(10)图像展示 cv2.imshow('img', img) # 每帧滞留1ms后消失 k = cv2.waitKey(1) # ESC键退出程序 if k & 0XFF==27: break # 释放视频资源 cap.release() cv2.destroyAllWindows()
效果图如下:
위 내용은 Python을 사용하여 테이블 하키 시각적 게임을 만드는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!