Python의 self 매개변수는 무엇입니까?
이미 알고 있는 것부터 시작해 보겠습니다. self - 메서드의 첫 번째 매개 변수 - 클래스 인스턴스를 참조합니다.
class MyClass: ┌─────────────────┐ ▼ │ def do_stuff(self, some_arg): │ print(some_arg)▲│ ││ ││ ││ ││ instance = MyClass() ││ instance.do_stuff("whatever") │ │ │ └───────────────────────────────┘
또한 이 인수는 실제로 self라고 불릴 필요는 없습니다. 계약. 예를 들어, 다른 언어에서 일반적으로 사용되는 것처럼 사용할 수 있습니다.
위 코드는 이미 사용해봤기 때문에 자연스럽고 당연할 수 있지만 .do_stuff()에 하나의 매개변수(some_arg)만 주었는데 메소드에서 두 개(self 및, some_arg)를 선언했는데 역시 '하지 않는다'라고 말하는 것 같습니다. 말이 안 돼요. 코드 조각의 화살표는 self가 인스턴스로 변환된다는 것을 보여 주지만 실제로는 어떻게 전달됩니까?
instance = MyClass() MyClass.do_stuff(instance, "whatever")
Python이 내부적으로 수행하는 작업은 instance.do_stuff("whatever")를 MyClass.do_stuff(instance, "whatever")로 변환하는 것입니다. 여기서는 이를 "파이썬의 마법"이라고 부를 수 있지만, 뒤에서 무슨 일이 일어나고 있는지 실제로 이해하려면 파이썬 메서드가 무엇인지, 함수와 어떻게 관련되는지 이해해야 합니다.
클래스 속성/메서드
Python에는 "메서드" 객체라는 것이 없습니다. 사실 메쏘드는 그냥 일반 함수입니다. 함수와 메서드의 차이점은 메서드는 클래스의 네임스페이스에 정의되어 해당 클래스의 속성이 된다는 점입니다.
이러한 속성은 클래스 사전 __dict__에 저장되어 있으며 직접 액세스하거나 vars 내장 함수를 사용하여 액세스할 수 있습니다.
MyClass.__dict__["do_stuff"] # <function MyClass.do_stuff at 0x7f132b73d550> vars(MyClass)["do_stuff"] # <function MyClass.do_stuff at 0x7f132b73d550>
이러한 속성에 액세스하는 가장 일반적인 방법은 "클래스 메서드" 방식입니다.
print(MyClass.do_stuff) # <function MyClass.do_stuff at 0x7f132b73d550>
여기서 클래스 속성을 사용하여 함수에 액세스하면 do_stuff가 MyClass의 함수라는 예상대로 인쇄됩니다. 그러나 인스턴스 속성을 사용하여 액세스할 수도 있습니다.
print(instance.do_stuff) # <bound method MyClass.do_stuff of <__main__.MyClass object at 0x7ff80c78de50>
하지만 이 경우 원래 함수 대신 "바운드 메서드"를 얻습니다. 여기서 Python이 하는 일은 클래스 속성을 인스턴스에 바인딩하여 "바인딩 메서드"라는 것을 생성하는 것입니다. 이 "바운드 메서드"는 이미 인스턴스를 첫 번째 인수(self)로 삽입하는 기본 함수를 둘러싼 래퍼입니다.
따라서 메소드는 다른 매개변수에 클래스 인스턴스(self)가 추가된 일반 함수입니다.
이러한 상황이 어떻게 발생하는지 이해하려면 설명자 프로토콜을 살펴봐야 합니다.
설명자 프로토콜
설명자는 메서드 뒤에 있는 메커니즘으로, __get__(), __set__() 또는 __delete__() 메서드를 정의하는 객체(클래스)입니다. self가 어떻게 작동하는지 이해하기 위해 서명이 있는 __get__()을 고려해 보겠습니다.
descr.__get__(self, instance, type=None) -> value
그러나 __get__() 메서드는 실제로 무엇을 합니까? 이를 통해 클래스의 속성 조회를 사용자 정의할 수 있습니다. 즉, 점 표기법을 사용하여 클래스 속성에 액세스할 때 발생하는 일을 사용자 정의할 수 있습니다. 이는 메소드가 실제로는 클래스의 속성일 뿐이라는 점을 고려하면 매우 유용합니다. 이는 __get__ 메서드를 사용하여 클래스의 "바운드 메서드"를 생성할 수 있음을 의미합니다.
이해를 더 쉽게 하기 위해 설명자를 사용하여 "메서드"를 구현하여 이를 보여드리겠습니다. 먼저 함수 객체의 순수 Python 구현을 만듭니다.
import types class Function: def __get__(self, instance, objtype=None): if instance is None: return self return types.MethodType(self, instance) def __call__(self): return
위의 Function 클래스는 설명자로 만드는 __get__ 을 구현합니다. 이 특수 메소드는 인스턴스 매개변수에서 클래스 인스턴스를 받습니다. 이 매개변수가 None이면 __get__ 메소드가 클래스(예: MyClass.do_stuff)에서 직접 호출되었음을 알기 때문에 그냥 self를 반환합니다. 그러나 인스턴스.do_stuff와 같은 클래스 인스턴스에서 호출되면 "바인딩된 메서드"를 수동으로 생성하는 방법인 type.MethodType을 반환합니다.
이 외에도 __call__ 특수 메서드도 제공합니다. __init__은 인스턴스를 초기화하기 위해 클래스가 호출될 때(예: 인스턴스 = MyClass()) 호출되는 반면, __call__은 인스턴스가 호출될 때(예: 인스턴스()) 호출됩니다. type.MethodType(self, 인스턴스)의 self가 호출 가능해야 하기 때문에 이를 사용해야 합니다.
이제 자체 함수 구현이 있으므로 이를 사용하여 메서드를 클래스에 바인딩할 수 있습니다.
class MyClass: do_stuff = Function() print(MyClass.__dict__["do_stuff"])# __get__ not invoked # <__main__.Function object at 0x7f229b046e50> print(MyClass.do_stuff)# __get__ invoked, but "instance" is None, "self" is returned print(MyClass.do_stuff.__get__(None, MyClass)) # <__main__.Function object at 0x7f229b046e50> instance = MyClass() print(instance.do_stuff)#__get__ invoked and "instance" is not None, "MethodType" is returned print(instance.do_stuff.__get__(instance, MyClass)) # <bound method ? of <__main__.MyClass object at 0x7fd526a33d30>
MyClass에 Function 유형의 do_stuff 속성을 제공하여 클래스 things의 네임스페이스에서 Python의 메서드 정의를 대략적으로 시뮬레이션합니다. 당시에 했습니다.
요약하면, instance.do_stuff 등의 속성에 접근하면 인스턴스의 속성 사전(__dict__)에서 do_stuff를 검색하게 됩니다. do_stuff가 __get__ 메소드를 정의하면 do_stuff.__get__이 호출되어 궁극적으로 다음을 호출합니다.
# For class invocation: print(MyClass.__dict__['do_stuff'].__get__(None, MyClass)) # <__main__.Function object at 0x7f229b046e50> # For instance invocation: print(MyClass.__dict__['do_stuff'].__get__(instance, MyClass)) # Alternatively: print(type(instance).__dict__['do_stuff'].__get__(instance, type(instance))) # <bound method ? of <__main__.MyClass object at 0x7fd526a33d30>
우리가 지금 알고 있듯이 - 바인딩된 메소드가 반환됩니다. 즉, 인수 self가 앞에 오는 원래 함수 주변의 호출 가능한 래퍼입니다!
더 자세히 살펴보고 싶다면 정적 메서드와 클래스 메서드를 비슷하게 구현할 수 있습니다(https://docs.python.org/3.7/howto/descriptor.html#static-methods-and-class-methods)
이유 메소드 정의에서 자체?
이제 어떻게 작동하는지 알지만 더 철학적인 질문이 있습니다. "왜 메소드 정의에 있어야 할까요?"
명시적인 self 메소드 매개변수는 논란의 여지가 있는 디자인 선택이지만 A 선택입니다. 그것은 단순성을 선호합니다.
Python은 "나쁠수록 좋다"라는 디자인 철학을 자체적으로 구현합니다. 여기에 설명되어 있습니다. 이 디자인 철학의 우선 순위는 다음과 같이 정의되는 "단순성"입니다.
디자인은 구현 및 인터페이스를 포함하여 단순해야 합니다. 인터페이스보다 구현이 단순하다는 것이 더 중요합니다...
이것이 바로 self의 경우입니다. 즉, 메소드 서명이 호출과 일치하지 않는 인터페이스를 희생하여 간단한 구현을 하는 것입니다.
물론 self를 명시적으로 작성해야 하는 이유나 보존해야 하는 이유가 더 많이 있습니다. 그 중 일부는 Guido van Rossum의 블로그 게시물(http://neopythonic.blogspot.com/2008/10/)에 설명되어 있습니다. Why-explicit-self-has-to-stay.html), 기사가 삭제 요청에 응답했습니다.
Python은 많은 복잡성을 추상화하지만 제 생각에는 낮은 수준의 세부 사항과 복잡성을 파헤치는 것은 언어 작동 방식을 더 잘 이해하고 문제가 발생할 때 고급 문제 해결/디버깅을 수행하는 데 매우 유용하지 않습니다.
또한 설명자를 이해하는 것은 몇 가지 사용 사례가 있기 때문에 실제로 매우 실용적일 수 있습니다. 대부분의 경우 실제로는 @property 설명자만 필요하지만 SLQAlchemy 또는 사용자 정의 유효성 검사기와 같은 사용자 정의 설명자가 적합한 경우도 있습니다.
위 내용은 Python의 self 매개변수는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

Golang은 성능과 확장 성 측면에서 Python보다 낫습니다. 1) Golang의 컴파일 유형 특성과 효율적인 동시성 모델은 높은 동시성 시나리오에서 잘 수행합니다. 2) 해석 된 언어로서 파이썬은 천천히 실행되지만 Cython과 같은 도구를 통해 성능을 최적화 할 수 있습니다.

Golang과 Python은 각각 고유 한 장점이 있습니다. Golang은 고성능 및 동시 프로그래밍에 적합하지만 Python은 데이터 과학 및 웹 개발에 적합합니다. Golang은 동시성 모델과 효율적인 성능으로 유명하며 Python은 간결한 구문 및 풍부한 라이브러리 생태계로 유명합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

개발 환경에서 Python과 JavaScript의 선택이 모두 중요합니다. 1) Python의 개발 환경에는 Pycharm, Jupyternotebook 및 Anaconda가 포함되어 있으며 데이터 과학 및 빠른 프로토 타이핑에 적합합니다. 2) JavaScript의 개발 환경에는 Node.js, VScode 및 Webpack이 포함되어 있으며 프론트 엔드 및 백엔드 개발에 적합합니다. 프로젝트 요구에 따라 올바른 도구를 선택하면 개발 효율성과 프로젝트 성공률이 향상 될 수 있습니다.
