목차
1. 프로세스 간 통신을 마스터해야 하는 이유
프로세스 간 통신의 주요 방법을 요약하면
1) 파이프 통신 방법
은 1의 단순 소켓 채널과 유사하며 양쪽 끝에서 메시지를 보내고 받을 수 있습니다.
Multiprocessing의 Queue 클래스는 Python queue 3.0 버전에서 수정되어 생산자와 메시지 전달자 간의 데이터 전송을 쉽게 구현할 수 있으며 Multiprocessing Queue 모듈은 잠금 보안 메커니즘.
4、同步机制通信
(1) 进程间同步锁 – Lock
(2) 子进程间协调机制 – Event
5、共享内存方式通信
(1) 共享变量
(2) 共享内存 Shared_memory
3) ShareableList 共享列表
6、共享内存管理器Manager
1) Manager的主要数据结构
2) 使用步骤
3) 销毁共享内存变量
4) 向管理器注册自定义类型
백엔드 개발 파이썬 튜토리얼 다중 처리를 사용하여 Python에서 프로세스 간 통신을 구현하는 방법은 무엇입니까?

다중 처리를 사용하여 Python에서 프로세스 간 통신을 구현하는 방법은 무엇입니까?

May 08, 2023 pm 09:31 PM
python multiprocessing

    1. 프로세스 간 통신을 마스터해야 하는 이유

    Python의 멀티 스레드 코드 효율성은 GIL에 의해 제한되며 멀티 코어 CPU로 가속화할 수 없습니다. 그러나 멀티 프로세스 방법은 GIL을 우회하고 이점을 활용할 수 있습니다. 다중 CPU 가속으로 인해 프로그램 성능이 크게 향상되지만

    프로세스 간 통신은 고려해야 할 문제입니다. 프로세스는 스레드와 다릅니다. 프로세스는 자체 독립 메모리 공간을 가지며 전역 변수를 사용하여 프로세스 간에 데이터를 전송할 수 없습니다.

    다중 처리를 사용하여 Python에서 프로세스 간 통신을 구현하는 방법은 무엇입니까?

    실제 프로젝트 요구 사항에는 집약적인 컴퓨팅이나 실시간 작업이 있는 경우가 많습니다. 때로는 사진, 대형 개체 등과 같은 대량의 데이터를 프로세스 간에 전송해야 하는 경우도 있습니다. 파일 직렬화 또는 네트워크 인터페이스를 통해 실시간 요구 사항을 충족하기 어렵습니다. redis 또는 kaffka, RabbitMQ의 타사 메시지 대기열 패키지는 시스템을 다시 복잡하게 만듭니다.

    Python 다중 처리 모듈 자체는 메시지 메커니즘, 동기화 메커니즘, 공유 메모리

    등 매우 효율적인 프로세스 간 통신 방법을 다양하게 제공합니다. Python 프로세스 간 통신의 다양한 방법과 보안 메커니즘의 사용을 이해하고 익히면 프로그램 실행 성능을 크게 향상시키는 데 도움이 될 수 있습니다.

    2. 프로세스 간 다양한 통신 방법 소개

    프로세스 간 통신의 주요 방법을 요약하면

    다중 처리를 사용하여 Python에서 프로세스 간 통신을 구현하는 방법은 무엇입니까?

    프로세스 간 통신의 메모리 안전성에 대해

    메모리 안전성이란 여러 프로세스가 서로 경쟁할 수 있음을 의미합니다. 같은 이유로 공유 변수 예외는 우발적인 파괴 및 기타 이유로 발생합니다. Multiprocessing 모듈에서 제공하는 큐, 파이프, 잠금 및 이벤트 개체는 모두 프로세스 간 통신 보안 메커니즘을 구현했습니다.
    공유 메모리를 사용하여 통신하는 경우 이러한 공유 메모리 변수를 코드에서 직접 추적하고 파기해야 합니다. 그렇지 않으면 정상적으로 파기되거나 스크램블되지 않을 수 있습니다. 시스템 이상을 유발합니다. 개발자가 공유 메모리의 사용 특성을 명확히 알지 않는 한, 이 공유 메모리를 직접 사용하는 것이 아니라 Manager 관리자를 통해 공유 메모리를 사용하는 것을 권장합니다.

    Memory Manager Manager

    Multiprocessing은 프로세스 통신의 메모리 보안 문제를 균일하게 해결할 수 있는 메모리 관리자 Manager 클래스를 제공합니다. 목록, dict, Queue, Lock, Event, Shared를 포함한 다양한 공유 데이터를 관리자에 추가할 수 있습니다. 기억 등은 일률적으로 추적되어 파괴됩니다.
    3. 메시지 메커니즘 통신

    1) 파이프 통신 방법

    은 1의 단순 소켓 채널과 유사하며 양쪽 끝에서 메시지를 보내고 받을 수 있습니다.

    파이프 객체 생성 방법:

    parent_conn, child_conn = Pipe(duplex=True/False)
    로그인 후 복사

    매개변수 설명

      duplex=True, 파이프라인은 양방향 통신입니다
    • duplex=False, 파이프라인은 단방향 통신입니다. child_conn만 메시지를 보낼 수 있고 parent_conn은 메시지를 보낼 수 있습니다. 받기만 합니다.
    • 샘플 코드:
    from multiprocessing import Process, Pipe
       def myfunction(conn):
          conn.send(['hi!! I am Python'])
          conn.close()
    
    if __name__ == '__main__':
          parent_conn, child_conn = Pipe()
          p = Process(target=myfunction, args=(child_conn,))
          p.start()
      	print (parent_conn.recv() )
    	p.join()
    로그인 후 복사

    2) 메시지 큐 큐 통신 방법

    Multiprocessing의 Queue 클래스는 Python queue 3.0 버전에서 수정되어 생산자와 메시지 전달자 간의 데이터 전송을 쉽게 구현할 수 있으며 Multiprocessing Queue 모듈은 잠금 보안 메커니즘.

    다중 처리를 사용하여 Python에서 프로세스 간 통신을 구현하는 방법은 무엇입니까?

    Queue 모듈은 총 3가지 유형의 대기열을 제공합니다.

    (1) FIFO 큐, 선입선출,

    class queue.Queue(maxsize=0)
    로그인 후 복사

    (2) LIFO 큐, 후입선출, 실제로는 스택

    class queue.LifoQueue(maxsize=0)
    로그인 후 복사

    (3) 우선순위 큐를 사용하면 우선순위가 가장 낮은 항목 값이 큐에 들어갑니다. 먼저

    class queue.PriorityQueue(maxsize=0)
    로그인 후 복사

    Multiprocessing.Queue 클래스의 주요 메서드:

    methodqueue.qsize()queue.full()queue.empty()queue.put(item)queue .get()queue.put_nowait(item), queue.get_nowait()

    说明:

    • put(), get() 是阻塞方法, 而put_notwait(), get_nowait()是非阻塞方法。

    • Multiprocessing 的Queue类没有提供Task_done, join方法

    Queue模块的其它队列类:
    (1) SimpleQueue
    简洁版的FIFO队列, 适事简单场景使用

    (2) JoinableQueue子类
    Python 3.5 后新增的 Queue的子类,拥有 task_done(), join() 方法

    • task_done()表示,最近读出的1个任务已经完成。

    • join()阻塞队列,直到queue中的所有任务都已完成。

    producer – consumer 场景,使用Queue的示例

    import multiprocessing
    
    def producer(numbers, q):
        for x in numbers:
            if x % 2 == 0:
                if q.full():
                    print("queue is full")
                    break
                q.put(x)
                print(f"put {x} in queue by producer")
        return None
    
    def consumer(q):
        while not q.empty():
            print(f"take data {q.get()} from queue by consumer")
        return None
    
    if __name__ == "__main__":
        # 设置1个queue对象,最大长度为5
        qu = multiprocessing.Queue(maxsize=5,) 
    
        # 创建producer子进程,把queue做为其中1个参数传给它,该进程负责写
        p5 = multiprocessing.Process(
            name="producer-1",
            target=producer,
            args=([random.randint(1, 100) for i in range(0, 10)], qu)
        )
        p5.start()
        p5.join()
        #创建consumer子进程,把queue做为1个参数传给它,该进程中队列中读
        p6 = multiprocessing.Process(
            name="consumer-1",
            target=consumer,
            args=(qu,)
        )
        p6.start()
        p6.join()
    
        print(qu.qsize())
    로그인 후 복사

    4、同步机制通信

    (1) 进程间同步锁 – Lock

    Multiprocessing也提供了与threading 类似的同步锁机制,确保某个时刻只有1个子进程可以访问某个资源或执行某项任务, 以避免同抢。

    例如:多个子进程同时访问数据库表时,如果没有同步锁,用户A修改1条数据后,还未提交,此时,用户B也进行了修改,可以预见,用户A提交的将是B个修改的数据。

    添加了同步锁,可以确保同时只有1个子进程能够进行写入数据库与提交操作。

    如下面的示例,同时只有1个进程可以执行打印操作。

    from multiprocessing import Process, Lock
    
    def f(l, i):
        l.acquire()
        try:
            print('hello world', i)
        finally:
            l.release()
    
    if __name__ == '__main__':
        lock = Lock()
    
        for num in range(10):
            Process(target=f, args=(lock, num)).start()
    로그인 후 복사

    (2) 子进程间协调机制 – Event

    Event 机制的工作原理:

    1个event 对象实例管理着1个 flag标记, 可以用set()方法将其置为true, 用clear()方法将其置为false, 使用wait()将阻塞当前子进程,直至flag被置为true.
    这样由1个进程通过event flag 就可以控制、协调各子进程运行。

    Event object的使用方法:
    1)主函数: 创建1个event 对象, flag = multiprocessing.Event() , 做为参数传给各子进程
    2) 子进程A: 不受event影响,通过event 控制其它进程的运行
    o 先clear(),将event 置为False, 占用运行权.
    o 完成工作后,用set()把flag置为True。
    3) 子进程B, C: 受event 影响
    o 设置 wait() 状态,暂停运行
    o 直到flag重新变为True,恢复运行

    主要方法:

    • set(), clear()设置 True/False,

    • wait() 使进程等待,直到flag被改为true.

    • is_set(), Return True if and only if the internal flag is true.

    验证进程间通信 – Event

    import multiprocessing
    import time
    import random
    
    def joo_a(q, ev):
        print("subprocess joo_a start")
        if not ev.is_set():
            ev.wait()
        q.put(random.randint(1, 100))
        print("subprocess joo_a ended")
    
    def joo_b(q, ev):
        print("subprocess joo_b start")
        ev.clear()
        time.sleep(2)
        q.put(random.randint(200, 300))
        ev.set()
        print("subprocess joo_b ended")
    
    def main_event():
        qu = multiprocessing.Queue()
        ev = multiprocessing.Event()
        sub_a = multiprocessing.Process(target=joo_a, args=(qu, ev))
        sub_b = multiprocessing.Process(target=joo_b, args=(qu, ev,))
        sub_a.start()
        sub_b.start()
        # ev.set()
        sub_a.join()
        sub_b.join()
        while not qu.empty():
            print(qu.get())
    
    if __name__ == "__main__":
        main_event()
    로그인 후 복사

    5、共享内存方式通信

    (1) 共享变量

    子进程之间共存内存变量,要用 multiprocessing.Value(), Array() 来定义变量。 实际上是ctypes 类型,由multiprocessing.sharedctypes模块提供相关功能

    注意 使用 share memory 要考虑同抢等问题,释放等问题,需要手工实现。因此在使用共享变量时,建议使用Manager管程来管理这些共享变量。

    def  func(num):
        num.value=10.78   #子进程改变数值的值,主进程跟着改变
     
    if  __name__=="__main__":
    num = multiprocessing.Value("d", 10.0) 
    # d表示数值,主进程与子进程可共享这个变量。
    
        p=multiprocessing.Process(target=func,args=(num,))
        p.start()
        p.join()
     
        print(num.value)
    로그인 후 복사

    进程之间共享数据(数组型):

    import multiprocessing
     
    def  func(num):
        num[2]=9999   #子进程改变数组,主进程跟着改变
     
    if  __name__=="__main__":
        num=multiprocessing.Array("i",[1,2,3,4,5])   
    
        p=multiprocessing.Process(target=func,args=(num,))
        p.start() 
        p.join()
     
        print(num[:])
    로그인 후 복사

    (2) 共享内存 Shared_memory

    如果进程间需要共享对象数据,或共享内容,数据较大,multiprocessing 提供了SharedMemory类来实现进程间实时通信,不需要通过发消息,读写磁盘文件来实现,速度更快。
    注意:直接使用SharedMemory 存在着同抢、泄露隐患,应通过SharedMemory Manager 管程类来使用, 以确保内存安全。

    创建共享内存区:

    multiprocessing.shared_memory.SharedMemory(name=none, create=False, size=0)
    로그인 후 복사

    方法:
    父进程创建shared_memory 后,子进程可以使用它,当不再需要后,使用close(), 删除使用unlink()方法
    相关属性:
    获取内存区内容: shm.buf
    获取内存区名称: shm.name
    获取内存区字节数: shm.size

    示例:

    >>> from multiprocessing import shared_memory
    >>> shm_a = shared_memory.SharedMemory(create=True, size=10)
    >>> type(shm_a.buf)
    <class &#39;memoryview&#39;>
    >>> buffer = shm_a.buf
    >>> len(buffer)
    10
    >>> buffer[:4] = bytearray([22, 33, 44, 55])  # Modify multiple at once
    >>> buffer[4] = 100                           # Modify single byte at a time
    >>> # Attach to an existing shared memory block
    >>> shm_b = shared_memory.SharedMemory(shm_a.name)
    >>> import array
    >>> array.array(&#39;b&#39;, shm_b.buf[:5])  # Copy the data into a new array.array
    array(&#39;b&#39;, [22, 33, 44, 55, 100])
    >>> shm_b.buf[:5] = b&#39;howdy&#39;  # Modify via shm_b using bytes
    >>> bytes(shm_a.buf[:5])      # Access via shm_a
    b&#39;howdy&#39;
    >>> shm_b.close()   # Close each SharedMemory instance
    >>> shm_a.close()
    >>> shm_a.unlink()  # Call unlink only once to release the shared memory
    로그인 후 복사

    3) ShareableList 共享列表

    sharedMemory类还提供了1个共享列表类型,这样就更方便了,进程间可以直接共享python强大的列表
    构建方法:
    multiprocessing.shared_memory.ShareableList(sequence=None, *, name=None)

    from multiprocessing import shared_memory
    >>> a = shared_memory.ShareableList([&#39;howdy&#39;, b&#39;HoWdY&#39;, -273.154, 100, None, True, 42])
    >>> [ type(entry) for entry in a ]
    [<class &#39;str&#39;>, <class &#39;bytes&#39;>, <class &#39;float&#39;>, <class &#39;int&#39;>, <class &#39;NoneType&#39;>, <class &#39;bool&#39;>, <class &#39;int&#39;>]
    >>> a[2]
    -273.154
    >>> a[2] = -78.5
    >>> a[2]
    -78.5
    >>> a[2] = &#39;dry ice&#39;  # Changing data types is supported as well
    >>> a[2]
    &#39;dry ice&#39;
    >>> a[2] = &#39;larger than previously allocated storage space&#39;
    Traceback (most recent call last):
      ...
    ValueError: exceeds available storage for existing str
    >>> a[2]
    &#39;dry ice&#39;
    >>> len(a)
    7
    >>> a.index(42)
    6
    >>> a.count(b&#39;howdy&#39;)
    0
    >>> a.count(b&#39;HoWdY&#39;)
    1
    >>> a.shm.close()
    >>> a.shm.unlink()
    >>> del a  # Use of a ShareableList after call to unlink() is unsupported
    
    
    b = shared_memory.ShareableList(range(5))         # In a first process
    >>> c = shared_memory.ShareableList(name=b.shm.name)  # In a second process
    >>> c
    ShareableList([0, 1, 2, 3, 4], name=&#39;...&#39;)
    >>> c[-1] = -999
    >>> b[-1]
    -999
    >>> b.shm.close()
    >>> c.shm.close()
    >>> c.shm.unlink()
    로그인 후 복사

    6、共享内存管理器Manager

    Multiprocessing 提供了 Manager 内存管理器类,当调用1个Manager实例对象的start()方法时,会创建1个manager进程,其唯一目的就是管理共享内存, 避免出现进程间共享数据不同步,内存泄露等现象。

    其原理如下:

    다중 처리를 사용하여 Python에서 프로세스 간 통신을 구현하는 방법은 무엇입니까?

    Manager管理器相当于提供了1个共享内存的服务,不仅可以被主进程创建的多个子进程使用,还可以被其它进程访问,甚至跨网络访问。本文仅聚焦于由单一主进程创建的各进程之间的通信。

    1) Manager的主要数据结构

    相关类:multiprocessing.Manager
    子类有:

    • multiprocessing.managers.SharedMemoryManager

    • multiprocessing.managers.BaseManager

    支持共享变量类型:

    • python基本类型 int, str, list, tuple, list

    • 进程通信对象: Queue, Lock, Event,

    • Condition, Semaphore, Barrier ctypes类型: Value, Array

    2) 使用步骤

    1)创建管理器对象

    snm = Manager()
    snm = SharedMemoryManager()
    로그인 후 복사

    2)创建共享内存变量
    新建list, dict

    sl = snm.list(), snm.dict()
    로그인 후 복사

    新建1块bytes共享内存变量,需要指定大小

    sx = snm.SharedMemory(size)
    로그인 후 복사

    新建1个共享列表变量,可用列表来初始化

    sl = snm.ShareableList(sequence) 如
    sl = smm.ShareableList([‘howdy&#39;, b&#39;HoWdY&#39;, -273.154, 100, True])
    로그인 후 복사

    新建1个queue, 使用multiprocessing 的Queue类型

    snm = Manager()
    q = snm.Queue()
    로그인 후 복사

    示例 :

    from multiprocessing import Process, Manager
    
    def f(d, l):
        d[1] = &#39;1&#39;
        d[&#39;2&#39;] = 2
        d[0.25] = None
        l.reverse()
    
    if __name__ == &#39;__main__&#39;:
        with Manager() as manager:
            d = manager.dict()
            l = manager.list(range(10))
    
            p = Process(target=f, args=(d, l))
            p.start()
            p.join()
    
            print(d)
            print(l)
    로그인 후 복사

    将打印

    {0.25: None, 1: '1', '2': 2}
    [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

    3) 销毁共享内存变量

    方法一:
    调用snm.shutdown()方法,会自动调用每个内存块的unlink()方法释放内存。或者 snm.close()
    方法二
    使用with语句,结束后会自动释放所有manager变量

    >>> with SharedMemoryManager() as smm:
    ...     sl = smm.ShareableList(range(2000))
    ...     # Divide the work among two processes, storing partial results in sl
    ...     p1 = Process(target=do_work, args=(sl, 0, 1000))
    ...     p2 = Process(target=do_work, args=(sl, 1000, 2000))
    ...     p1.start()
    ...     p2.start()  # A multiprocessing.Pool might be more efficient
    ...     p1.join()
    ...     p2.join()   # Wait for all work to complete in both processes
    ...     total_result = sum(sl)  # Consolidate the partial results now in sl
    로그인 후 복사

    4) 向管理器注册自定义类型

    managers的子类BaseManager提供register()方法,支持注册自定义数据类型。如下例,注册1个自定义MathsClass类,并生成实例。

    from multiprocessing.managers import BaseManager
    
    class MathsClass:
        def add(self, x, y):
            return x + y
        def mul(self, x, y):
            return x * y
    
    class MyManager(BaseManager):
        pass
    
    MyManager.register(&#39;Maths&#39;, MathsClass)
    
    if __name__ == &#39;__main__&#39;:
        with MyManager() as manager:
            maths = manager.Maths()
            print(maths.add(4, 3))         # prints 7
            print(maths.mul(7, 8))
    로그인 후 복사

    위 내용은 다중 처리를 사용하여 Python에서 프로세스 간 통신을 구현하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

    본 웹사이트의 성명
    본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

    핫 AI 도구

    Undresser.AI Undress

    Undresser.AI Undress

    사실적인 누드 사진을 만들기 위한 AI 기반 앱

    AI Clothes Remover

    AI Clothes Remover

    사진에서 옷을 제거하는 온라인 AI 도구입니다.

    Undress AI Tool

    Undress AI Tool

    무료로 이미지를 벗다

    Clothoff.io

    Clothoff.io

    AI 옷 제거제

    AI Hentai Generator

    AI Hentai Generator

    AI Hentai를 무료로 생성하십시오.

    뜨거운 도구

    메모장++7.3.1

    메모장++7.3.1

    사용하기 쉬운 무료 코드 편집기

    SublimeText3 중국어 버전

    SublimeText3 중국어 버전

    중국어 버전, 사용하기 매우 쉽습니다.

    스튜디오 13.0.1 보내기

    스튜디오 13.0.1 보내기

    강력한 PHP 통합 개발 환경

    드림위버 CS6

    드림위버 CS6

    시각적 웹 개발 도구

    SublimeText3 Mac 버전

    SublimeText3 Mac 버전

    신 수준의 코드 편집 소프트웨어(SublimeText3)

    PHP 및 Python : 코드 예제 및 비교 PHP 및 Python : 코드 예제 및 비교 Apr 15, 2025 am 12:07 AM

    PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

    Python vs. JavaScript : 커뮤니티, 라이브러리 및 리소스 Python vs. JavaScript : 커뮤니티, 라이브러리 및 리소스 Apr 15, 2025 am 12:16 AM

    Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

    Docker 원리에 대한 자세한 설명 Docker 원리에 대한 자세한 설명 Apr 14, 2025 pm 11:57 PM

    Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

    터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

    vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

    Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

    VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

    파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

    파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

    Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

    VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

    VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

    VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

    See all articles
    Description
    큐 길이를 반환합니다
    queue 가득 차면 True를 반환하고, 그렇지 않으면 False를 반환합니다.
    대기열이 비어 있으면 True를 반환하고, 그렇지 않으면 False를 반환
    에 데이터를 씁니다. queue
    큐에서 데이터를 던집니다.
    쓰거나 던질 때까지 기다리는 시간이 없습니다