목차
AI 카메라란 무엇인가요?
AI 카메라가 물체를 감지하는 방법은 작동합니다
특정 물체를 감지하도록 AI 카메라 훈련
객체 감지를 위해 AI 카메라를 사용할 때의 이점
1. 더 빠른 감지 시간
2. 더 높은 정확도
3. 더 많은 비용 절감
4. 더 높은 확장성
요약
번역가 소개
기술 주변기기 일체 포함 AI 카메라가 물체를 감지하고 얼굴을 인식하는 방법

AI 카메라가 물체를 감지하고 얼굴을 인식하는 방법

May 08, 2023 pm 11:52 PM
일체 포함 카메라 얼굴 인식

역자 | Chen Jun

리뷰어 | Sun Shujuan

인공 지능(AI)은 수십 년 동안 존재해 왔지만 이 기술이 지원과 같은 응용 분야에 널리 사용된 것은 최근입니다. 잠재 고객을 식별하고 환경에서 위험한 물체를 식별합니다. 특히 인공지능이 구동하는 물체 감지 분야에서는 기존 폐쇄회로텔레비전(CCTV) 감시 카메라의 성능을 근본적으로 향상시킨다.

AI 카메라가 물체를 감지하고 얼굴을 인식하는 방법

현재 AI 카메라는 객체 인식 소프트웨어의 도움으로 이미 얼굴과 앞에 나타나는 다양한 객체를 인식할 수 있습니다. 이는 실제 보안 사용 시나리오에 있어 매우 실용적이고 혁신적인 의미를 갖습니다.

AI 카메라란 무엇인가요?

먼저 개념을 명확히 합시다. AI 카메라는 시각적 이미지를 캡처하거나 동영상을 만드는 데 사용할 수 있는 새로운 장치가 아니지만 기존 카메라와 매우 유사합니다. 컴퓨터 비전과 같은 기술을 사용하여 시각적 데이터로부터 실용적인 정보를 "학습"할 수 있는 시각적 처리 장치입니다.

머신러닝 알고리즘을 활용하여 AI 카메라는 시각적 이미지 속 다양한 정보를 원활하게 처리할 수 있습니다. 예를 들어, 일반적인 용도 중 하나는 AI 카메라가 센서를 사용하여 이미지를 분석하고 이미지를 캡처하는 데 가장 적합한 설정을 결정할 수 있다는 것입니다.

최근 몇 년 동안 물체 감지는 많은 수직 분야에서 널리 사용되었습니다. 예를 들어, 일부 산업에서는 일부 회사가 얼굴 인식, 차량 감지 및 기타 의미 개체 감지를 위해 AI 카메라를 사용합니다.

일부 특수 장면(예: 건설 현장)에서는 AI 카메라가 안전 프로토콜을 통과하여 건설 작업자가 기본 안전 보호 장비를 착용했는지 또는 높은 고도의 물체가 사람 머리를 향해 떨어지는지 여부를 즉시 감지할 수도 있습니다.

또한 AI 카메라는 직원 행동을 모니터링하여 직원이 작업하는 동안 위험 물질에 너무 가까이 있는지, 안전 위협 경고를 무시하는지 여부도 판단할 수 있습니다. 이러한 실시간 위험 감지를 기반으로 AI 카메라는 소리, 빛, 전기 및 기타 방법을 사용하여 현장 직원에게 현재 진행 중인 비정상적인 상황을 상기시키거나 배경에 알려 사고가 발생하기 전에 생명을 구하고 비용이 많이 드는 오류를 방지할 수도 있습니다. 수정.

AI 카메라가 물체를 감지하는 방법은 작동합니다

물체 감지에는 특정 알고리즘을 통해 카메라로 캡처한 이미지 데이터를 처리하고 이를 데이터베이스에 있는 알려진 물체와 비교하는 작업이 포함됩니다. 그런 다음 알고리즘은 데이터베이스에 이미 있는 개체와 유사한 개체를 식별하고 결과를 반환합니다. 예를 들어, 얼굴을 감지하도록 설계된 AI 카메라는 일부 기능이 차단되거나 인식할 수 없는 경우에도 사람이나 기타 개체를 사전에 식별할 수 있습니다. AI 카메라는 촬영한 이미지와 백엔드 데이터베이스에 저장된 대량의 얼굴 정보를 비교해 일치할 가능성이 있는 얼굴 특징을 검색한다.

동시에 이러한 카메라를 사용하면 고용주는 얼굴 인식 기술을 통해 직원 출석을 더욱 효과적으로 추적하고 직장 내 직원 행동을 모니터링할 수 있습니다.

특정 물체를 감지하도록 AI 카메라 훈련

다른 AI 기반 도구와 유사하게, AI 카메라는 특정 차량을 감지하기 위해 수십만 개의 자동차 이미지로부터 판단을 받은 후와 같은 대규모 데이터 세트에 대해 훈련되어야 합니다. 더 효과적이고 정확하게.

감지할 다양한 물체의 이미지를 수집하려면 먼저 AI 카메라를 훈련시켜야 한다는 것을 알 수 있습니다. 이 단계에서 우리는 "한신이 군대를 가리키면 많을수록 좋다"는 목표를 달성해야 합니다. 즉, 다양한 시야각, 조명 조건, 색상, 다양한 촬영 각도를 포함한 이미지를 표시해야 합니다. 카메라에 더 풍부한 이미지를 제공해야만 판단 능력을 반복적으로 훈련할 수 있습니다. 올바른 특징을 지속적으로 축적하고 관련 없는 간섭 요인을 제거함으로써 현실 세계에서 정확한 인식을 할 수 있습니다.

기술적으로 말하면 TensorFlow Lite 또는 PyTorch와 같은 오픈 소스 라이브러리를 사용하여 AI 카메라 시스템용으로 개발한 알고리즘을 훈련시켜 특정 물체를 감지할 수 있습니다. 전체 프로세스에는 코드 작성, 이미지 또는 비디오 수신을 위한 알고리즘 호출, 콘텐츠에 해당하는 태그 출력이 포함됩니다.

객체 감지를 위해 AI 카메라를 사용할 때의 이점

AI 카메라를 추가하면 기업에 특정 비용이 발생하지만, 그것이 가져오는 이점에 비해 많은 업계에서는 여전히 이를 기꺼이 받아들이고 활성화하고 있습니다. 아래에서는 D-Link 시리즈 AI 카메라를 예로 들어 실제 사용 시나리오에서 네 가지 주요 이점에 대해 논의하겠습니다.

1. 더 빠른 감지 시간

기존 카메라 시스템은 물체를 감지하는 데 느리고 신뢰할 수 없는 경향이 있으며 일반적으로 물체를 정확하게 찾기 위해 인간의 눈 관찰에 의존합니다. AI 카메라는 물체를 빠르고 정확하게 감지하도록 설계 및 제작되었습니다. 오늘날 AI 기술의 빠른 업데이트와 반복으로 AI 카메라는 감지 시간을 크게 단축했습니다. 이러한 중요한 개선은 건설 현장이나 공공 도로와 같이 빠르게 변화하는 환경에서 특히 중요합니다.

2. 더 높은 정확도

기존 카메라 시스템에 비해 물체 감지 카메라는 인식 정확도도 많이 향상되었습니다. 이는 부분적으로 다양한 각도와 거리에서 물체를 식별하는 능력 덕분입니다. 물체의 크기나 모양이 비슷해 보이더라도 카메라는 그 차이를 구분할 수 있습니다. 이러한 특성은 보안 모니터링, 재고 관리 등 정교한 애플리케이션 시나리오에 더 적합하며 인공 지능의 특성을 반영할 수도 있습니다.

3. 더 많은 비용 절감

마찬가지로 물체 감지 카메라는 기존 카메라에 비해 정확도가 더 높고 감지 효율성이 더 빠르며 이는 시간과 비용 절약을 반영합니다. 기업은 AI 지원 시스템 구축에 사전 투자함으로써 레거시 시스템의 부정확하거나 느린 결과로 인해 비용이 많이 드는 실수와 기회 상실을 방지할 수 있습니다. 더욱이 이러한 시스템은 수동 유지 관리가 덜 필요하고 정기적인 수동 교정이 필요하지 않은 경향이 있습니다. 따라서 장기적으로 AI 카메라는 실제로 기업의 자본 투자를 절약할 수 있습니다.

4. 더 높은 확장성

AI 카메라는 배포 및 구현의 편의성으로 인해 리소스 부담을 늘리지 않고도 모니터링 기능을 빠르게 확장 및 확장할 수 있습니다. 또한 과거의 수동 식별 방법에서는 여러 작업자가 이미지에서 본 내용을 분석하고 해석하기 위해 화면을 계속 응시해야 했습니다. AI 카메라는 보다 안정적인 결과를 제공하고, 수작업이 지루할 때 발생할 수 있는 인식 오류를 방지합니다.

요약

결론적으로 인공지능은 기존의 인식 및 모니터링 기술을 재정의하여 다양한 물체 감지 분야에서 핵심적인 역할을 하고 있으며 심지어 생명을 구할 수도 있습니다. 물론 AI 기술의 실제 적용 시나리오는 이보다 훨씬 더 많다. 고객 챗봇부터 콘텐츠 편집, 인기 AI 그림까지, 인공지능은 계속해서 우리 삶과 밀접한 관계를 맺고 있습니다.

번역가 소개

51CTO 커뮤니티 편집자인 Julian Chen은 IT 프로젝트 구현 분야에서 10년 이상의 경험을 갖고 있으며, 내부 및 외부 자원과 위험을 관리하고 제어하는 ​​데 능숙하며 네트워크 및 정보 보안 지식 전파에 중점을 둡니다. 그리고 경험. Original 제목 :

ai 카메라가 물체를 감지하고 얼굴을 인식하는 방법 , 저자 : Karim Ahmad

위 내용은 AI 카메라가 물체를 감지하고 얼굴을 인식하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. 크로스 플레이가 있습니까?
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. Aug 01, 2024 pm 09:40 PM

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

See all articles