xpath, JsonPath 및 bs4에 Python을 사용하는 방법은 무엇입니까?
1. douban.com/simple
- Import lxml.etree
- etree.parse() 로컬 파일 구문 분석
pip install lxml ‐i https://pypi.douban.com/simple
导入lxml.etree
from lxml import etree
etree.parse() 解析本地文件
html_tree = etree.parse('XX.html')
-
etree.HTML() 服务器响应文件
etree.HTML() 서버 응답 파일html_tree = etree.HTML(response.read().decode('utf‐8')
html_tree = etree.HTML(response.read().decode('utf‐8')
- .html_tree.xpath (xpath 경로)
from lxml import etree
html_tree = etree. 구문 분석(' XX.html')
- 계층 관계에 관계없이 모든 하위 노드 찾기
- 직접 하위 노드 찾기
//div[@id] //div[@id="maincontent"]
//@class
//div[contains(@id, "he")] //div[starts‐with(@id, "he")]
//div/h2/text()
xpath.html rreee
//div[@id="head" and @class="s_down"] //title | //price
Climb Baidu 검색 버튼 값 가져오기<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8"/>
<title>Title</title>
</head>
<body>
<ul>
<li id="l1" class="class1">北京</li>
<li id="l2" class="class2">上海</li>
<li id="d1">广州</li>
<li>深圳</li>
</ul>
</body>
</html>
로그인 후 복사
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"/> <title>Title</title> </head> <body> <ul> <li id="l1" class="class1">北京</li> <li id="l2" class="class2">上海</li> <li id="d1">广州</li> <li>深圳</li> </ul> </body> </html>
from lxml import etree # xpath解析 # 本地文件: etree.parse # 服务器相应的数据 response.read().decode('utf-8') etree.HTML() tree = etree.parse('xpath.html') # 查找url下边的li li_list = tree.xpath('//body/ul/li') print(len(li_list)) # 4 # 获取标签中的内容 li_list = tree.xpath('//body/ul/li/text()') print(li_list) # ['北京', '上海', '广州', '深圳'] # 获取带id属性的li li_list = tree.xpath('//ul/li[@id]') print(len(li_list)) # 3 # 获取id为l1的标签内容 li_list = tree.xpath('//ul/li[@id="l1"]/text()') print(li_list) # ['北京'] # 获取id为l1的class属性值 c1 = tree.xpath('//ul/li[@id="l1"]/@class') print(c1) # ['class1'] # 获取id中包含l的标签 li_list = tree.xpath('//ul/li[contains(@id, "l")]/text()') print(li_list) # ['北京', '上海'] # 获取id以d开头的标签 li_list = tree.xpath('//ul/li[starts-with(@id,"d")]/text()') print(li_list) # ['广州'] # 获取id为l2并且class为class2的标签 li_list = tree.xpath('//ul/li[@id="l2" and @class="class2"]/text()') print(li_list) # ['上海'] # 获取id为l2或id为d1的标签 li_list = tree.xpath('//ul/li[@id="l2"]/text() | //ul/li[@id="d1"]/text()') print(li_list) # ['上海', '广州']
import urllib.request
from lxml import etree
url = 'http://www.baidu.com'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36'
}
request = urllib.request.Request(url=url, headers=headers)
response = urllib.request.urlopen(request)
content = response.read().decode('utf-8')
tree = etree.HTML(content)
value = tree.xpath('//input[@id="su"]/@value')
print(value)
로그인 후 복사
2.2 jsonpathimport urllib.request from lxml import etree url = 'http://www.baidu.com' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36' } request = urllib.request.Request(url=url, headers=headers) response = urllib.request.urlopen(request) content = response.read().decode('utf-8') tree = etree.HTML(content) value = tree.xpath('//input[@id="su"]/@value') print(value)
# 需求 下载的前十页的图片
# https://sc.chinaz.com/tupian/qinglvtupian.html 1
# https://sc.chinaz.com/tupian/qinglvtupian_page.html
import urllib.request
from lxml import etree
def create_request(page):
if (page == 1):
url = 'https://sc.chinaz.com/tupian/qinglvtupian.html'
else:
url = 'https://sc.chinaz.com/tupian/qinglvtupian_' + str(page) + '.html'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36',
}
request = urllib.request.Request(url=url, headers=headers)
return request
def get_content(request):
response = urllib.request.urlopen(request)
content = response.read().decode('utf-8')
return content
def down_load(content):
# 下载图片
# urllib.request.urlretrieve('图片地址','文件的名字')
tree = etree.HTML(content)
name_list = tree.xpath('//div[@id="container"]//a/img/@alt')
# 一般设计图片的网站都会进行懒加载
src_list = tree.xpath('//div[@id="container"]//a/img/@src2')
print(src_list)
for i in range(len(name_list)):
name = name_list[i]
src = src_list[i]
url = 'https:' + src
urllib.request.urlretrieve(url=url, filename='./loveImg/' + name + '.jpg')
if __name__ == '__main__':
start_page = int(input('请输入起始页码'))
end_page = int(input('请输入结束页码'))
for page in range(start_page, end_page + 1):
# (1) 请求对象的定制
request = create_request(page)
# (2)获取网页的源码
content = get_content(request)
# (3)下载
down_load(content)
로그인 후 복사
# 需求 下载的前十页的图片 # https://sc.chinaz.com/tupian/qinglvtupian.html 1 # https://sc.chinaz.com/tupian/qinglvtupian_page.html import urllib.request from lxml import etree def create_request(page): if (page == 1): url = 'https://sc.chinaz.com/tupian/qinglvtupian.html' else: url = 'https://sc.chinaz.com/tupian/qinglvtupian_' + str(page) + '.html' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36', } request = urllib.request.Request(url=url, headers=headers) return request def get_content(request): response = urllib.request.urlopen(request) content = response.read().decode('utf-8') return content def down_load(content): # 下载图片 # urllib.request.urlretrieve('图片地址','文件的名字') tree = etree.HTML(content) name_list = tree.xpath('//div[@id="container"]//a/img/@alt') # 一般设计图片的网站都会进行懒加载 src_list = tree.xpath('//div[@id="container"]//a/img/@src2') print(src_list) for i in range(len(name_list)): name = name_list[i] src = src_list[i] url = 'https:' + src urllib.request.urlretrieve(url=url, filename='./loveImg/' + name + '.jpg') if __name__ == '__main__': start_page = int(input('请输入起始页码')) end_page = int(input('请输入结束页码')) for page in range(start_page, end_page + 1): # (1) 请求对象的定制 request = create_request(page) # (2)获取网页的源码 content = get_content(request) # (3)下载 down_load(content)
J 사용 SONPath 구문 요소 및 해당 XPath 요소 비교:
예:
jsonpath.json
pip install jsonpath
obj = json.load(open('json文件', 'r', encoding='utf‐8')) ret = jsonpath.jsonpath(obj, 'jsonpath语法')
2 가져오기from bs4 import BeautifulSoup
3. 객체 생성
서버 응답 파일 생성 객체 수프 = BeautifulSoup(response.read().decode(), 'lxml')
로컬 파일 생성 객체 수프 = BeautifulSoup (open('1.html'), 'lxml')
- 참고:
3.2로 지정해야 합니다. 설치 및 생성
3.3 노드 위치 지정{ "store": { "book": [ { "category": "修真", "author": "六道", "title": "坏蛋是怎样练成的", "price": 8.95 }, { "category": "修真", "author": "天蚕土豆", "title": "斗破苍穹", "price": 12.99 }, { "category": "修真", "author": "唐家三少", "title": "斗罗大陆", "isbn": "0-553-21311-3", "price": 8.99 }, { "category": "修真", "author": "南派三叔", "title": "星辰变", "isbn": "0-395-19395-8", "price": 22.99 } ], "bicycle": { "author": "老马", "color": "黑色", "price": 19.95 } } }로그인 후 복사
import json import jsonpath obj = json.load(open('jsonpath.json', 'r', encoding='utf-8')) # 书店所有书的作者 author_list = jsonpath.jsonpath(obj, '$.store.book[*].author') print(author_list) # ['六道', '天蚕土豆', '唐家三少', '南派三叔'] # 所有的作者 author_list = jsonpath.jsonpath(obj, '$..author') print(author_list) # ['六道', '天蚕土豆', '唐家三少', '南派三叔', '老马'] # store下面的所有的元素 tag_list = jsonpath.jsonpath(obj, '$.store.*') print( tag_list) # [[{'category': '修真', 'author': '六道', 'title': '坏蛋是怎样练成的', 'price': 8.95}, {'category': '修真', 'author': '天蚕土豆', 'title': '斗破苍穹', 'price': 12.99}, {'category': '修真', 'author': '唐家三少', 'title': '斗罗大陆', 'isbn': '0-553-21311-3', 'price': 8.99}, {'category': '修真', 'author': '南派三叔', 'title': '星辰变', 'isbn': '0-395-19395-8', 'price': 22.99}], {'author': '老马', 'color': '黑色', 'price': 19.95}] # store里面所有东西的price price_list = jsonpath.jsonpath(obj, '$.store..price') print(price_list) # [8.95, 12.99, 8.99, 22.99, 19.95] # 第三个书 book = jsonpath.jsonpath(obj, '$..book[2]') print(book) # [{'category': '修真', 'author': '唐家三少', 'title': '斗罗大陆', 'isbn': '0-553-21311-3', 'price': 8.99}] # 最后一本书 book = jsonpath.jsonpath(obj, '$..book[(@.length-1)]') print(book) # [{'category': '修真', 'author': '南派三叔', 'title': '星辰变', 'isbn': '0-395-19395-8', 'price': 22.99}] # 前面的两本书 book_list = jsonpath.jsonpath(obj, '$..book[0,1]') # book_list = jsonpath.jsonpath(obj,'$..book[:2]') print( book_list) # [{'category': '修真', 'author': '六道', 'title': '坏蛋是怎样练成的', 'price': 8.95}, {'category': '修真', 'author': '天蚕土豆', 'title': '斗破苍穹', 'price': 12.99}] # 条件过滤需要在()的前面添加一个? # 过滤出所有的包含isbn的书。 book_list = jsonpath.jsonpath(obj, '$..book[?(@.isbn)]') print( book_list) # [{'category': '修真', 'author': '唐家三少', 'title': '斗罗大陆', 'isbn': '0-553-21311-3', 'price': 8.99}, {'category': '修真', 'author': '南派三叔', 'title': '星辰变', 'isbn': '0-395-19395-8', 'price': 22.99}] # 哪本书超过了10块钱 book_list = jsonpath.jsonpath(obj, '$..book[?(@.price>10)]') print( book_list) # [{'category': '修真', 'author': '天蚕土豆', 'title': '斗破苍穹', 'price': 12.99}, {'category': '修真', 'author': '南派三叔', 'title': '星辰变', 'isbn': '0-395-19395-8', 'price': 22.99}]
3.5 노드 정보
1.根据标签名查找节点 soup.a 【注】只能找到第一个a soup.a.name soup.a.attrs 2.函数 (1).find(返回一个对象) find('a'):只找到第一个a标签 find('a', title='名字') find('a', class_='名字') (2).find_all(返回一个列表) find_all('a') 查找到所有的a find_all(['a', 'span']) 返回所有的a和span find_all('a', limit=2) 只找前两个a (3).select(根据选择器得到节点对象)【推荐】 1.element eg:p 2..class eg:.firstname 3.#id eg:#firstname 4.属性选择器 [attribute] eg:li = soup.select('li[class]') [attribute=value] eg:li = soup.select('li[class="hengheng1"]') 5.层级选择器 element element div p element>element div>p element,element div,p eg:soup = soup.select('a,span')
1.根据标签名查找节点 soup.a 【注】只能找到第一个a soup.a.name soup.a.attrs 2.函数 (1).find(返回一个对象) find('a'):只找到第一个a标签 find('a', title='名字') find('a', class_='名字') (2).find_all(返回一个列表) find_all('a') 查找到所有的a find_all(['a', 'span']) 返回所有的a和span find_all('a', limit=2) 只找前两个a (3).select(根据选择器得到节点对象)【推荐】 1.element eg:p 2..class eg:.firstname 3.#id eg:#firstname 4.属性选择器 [attribute] eg:li = soup.select('li[class]') [attribute=value] eg:li = soup.select('li[class="hengheng1"]') 5.层级选择器 element element div p element>element div>p element,element div,p eg:soup = soup.select('a,span')
3.6 사용 예
bs4.html(1).获取节点内容:适用于标签中嵌套标签的结构 obj.string obj.get_text()【推荐】 (2).节点的属性 tag.name 获取标签名 eg:tag = find('li) print(tag.name) tag.attrs将属性值作为一个字典返回 (3).获取节点属性 obj.attrs.get('title')【常用】 obj.get('title') obj['title']
(1).获取节点内容:适用于标签中嵌套标签的结构 obj.string obj.get_text()【推荐】 (2).节点的属性 tag.name 获取标签名 eg:tag = find('li) print(tag.name) tag.attrs将属性值作为一个字典返回 (3).获取节点属性 obj.attrs.get('title')【常用】 obj.get('title') obj['title']
3.7 스타벅스 제품명 파싱<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Title</title>
</head>
<body>
<div>
<ul>
<li id="l1">张三</li>
<li id="l2">李四</li>
<li>王五</li>
<a href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" " class="a1">google</a>
<span>嘿嘿嘿</span>
</ul>
</div>
<a href="" title=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" a2">百度</a>
<div id="d1">
<span>
哈哈哈
</span>
</div>
<p id="p1" class="p1">呵呵呵</p>
</body>
</html>
위 내용은 xpath, JsonPath 및 bs4에 Python을 사용하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

데이터 전문가는 다양한 소스에서 많은 양의 데이터를 처리해야합니다. 이것은 데이터 관리 및 분석에 어려움을 겪을 수 있습니다. 다행히도 AWS Glue와 Amazon Athena의 두 가지 AWS 서비스가 도움이 될 수 있습니다.

Redis의 대기열을 읽으려면 대기열 이름을 얻고 LPOP 명령을 사용하여 요소를 읽고 빈 큐를 처리해야합니다. 특정 단계는 다음과 같습니다. 대기열 이름 가져 오기 : "큐 :"와 같은 "대기열 : my-queue"의 접두사로 이름을 지정하십시오. LPOP 명령을 사용하십시오. 빈 대기열 처리 : 대기열이 비어 있으면 LPOP이 NIL을 반환하고 요소를 읽기 전에 대기열이 존재하는지 확인할 수 있습니다.

Redis 서버를 시작하는 단계에는 다음이 포함됩니다. 운영 체제에 따라 Redis 설치. Redis-Server (Linux/MacOS) 또는 Redis-Server.exe (Windows)를 통해 Redis 서비스를 시작하십시오. Redis-Cli Ping (Linux/MacOS) 또는 Redis-Cli.exe Ping (Windows) 명령을 사용하여 서비스 상태를 확인하십시오. Redis-Cli, Python 또는 Node.js와 같은 Redis 클라이언트를 사용하여 서버에 액세스하십시오.

질문 : Redis 서버 버전을 보는 방법은 무엇입니까? 명령 줄 도구 Redis-Cli를 사용하여 연결된 서버의 버전을보십시오. 정보 서버 명령을 사용하여 서버의 내부 버전을보고 정보를 구문 분석하고 반환해야합니다. 클러스터 환경에서 각 노드의 버전 일관성을 확인하고 스크립트를 사용하여 자동으로 확인할 수 있습니다. 스크립트를 사용하여 Python 스크립트와 연결 및 인쇄 버전 정보와 같은보기 버전을 자동화하십시오.

Navicat의 비밀번호 보안은 대칭 암호화, 암호 강도 및 보안 측정의 조합에 의존합니다. 특정 측정에는 다음이 포함됩니다. SSL 연결 사용 (데이터베이스 서버가 인증서를 지원하고 올바르게 구성하는 경우), 정기적으로 Navicat을 업데이트하고보다 안전한 방법 (예 : SSH 터널), 액세스 권한 제한 및 가장 중요한 것은 암호를 기록하지 않습니다.
