목차
1 3가지 주요 모델과 일반적으로 사용되는 10가지 알고리즘 [소개]
1-1 3가지 주요 모델
1-2 10개 일반적으로 사용됨 알고리즘
2 파이썬 데이터 분석을 위한 판다 2-1 판다란 무엇인가
2-2 팬더가 파일을 읽는 중
2-3 pandas数据结构
2-3-1 pandas数据结构之DataFrame
2-3-1 Pandas 数据结构之Series
2-4查询数据
2-3-1 팬더 데이터 구조 DataFrame
2-3-1 팬더 데이터 구조 시리즈
백엔드 개발 파이썬 튜토리얼 세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

May 12, 2023 pm 09:19 PM
python

    1 3가지 주요 모델과 일반적으로 사용되는 10가지 알고리즘 [소개]

    1-1 3가지 주요 모델

    예측 모델: 신경망 예측, 그레이 예측, 피팅 보간 예측(선형 회귀), 시간 계열 예측, 마르코프 체인 예측, 미분 방정식 예측, 로지스틱 모델 등. 적용 분야 : 인구 예측, 수질 오염 증가 예측, 바이러스 확산 예측, 경쟁 승률
    산업, 농업, 상업 및 기타 경제 분야의 예측, 월수입 예측, 매출 예측, 경제 발전 예측 등 환경, 사회 군사 및 기타 분야에서 널리 사용됩니다.

    최적화 모델: 계획 모델(목표 프로그래밍, 선형 프로그래밍, 비선형 프로그래밍, 정수 프로그래밍, 동적 프로그래밍), 그래프 이론 모델, 큐잉 이론 모델, 신경망 모델, 최신 최적화 알고리즘(유전 알고리즘, 시뮬레이션 어닐링 알고리즘, Ant 콜로니 알고리즘, 타부 검색 알고리즘) 등 응용분야 : 특급배송을 위한 택배기사의 최단 경로 문제, 수자원 스케줄링 최적화 문제, 고속도로
    출구 요금소 문제, 항공 정찰을 피하기 위한 군사작전 시기 및 경로 선택, 물류 부지 선정 문제, 상권 배치 계획 , 등 필드.

    평가 모델: 퍼지 종합 평가 방법, 분석 계층 프로세스, 군집 분석 방법, 주성분 분석 평가 방법,
    Gray 종합 평가 방법, 인공 신경망 평가 방법 등 적용 분야: 특정 지역 수자원 평가, 수자원 보존 프로젝트 위험 평가, 도시 개발 수준 평가, 축구 코치 평가, 농구팀 평가, 수질 생태 평가, 댐 안전 평가, 경사면 안정성 평가

    1-2 10개 일반적으로 사용됨 알고리즘

    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    2 파이썬 데이터 분석을 위한 판다 2-1 판다란 무엇인가

    오픈 소스 파이썬 클래스 라이브러리: 데이터 분석, 데이터 처리, 데이터 시각화에 사용

    • 고성능

    • 쉬움 사용하기 쉬운 데이터 구조

    • · 사용하기 쉬운 분석 도구

    다른 라이브러리와 함께 사용하기에 매우 편리함:

    • numpy: 과학 컴퓨팅용

    • scikit-learn: 머신러닝에 사용

    2-2 팬더가 파일을 읽는 중

    '''
    当使用Pandas做数据分析时,需要读取事先准备好的数据集,这是做数据分析的第一步。
    Pandas提供了多种读取数据的方法:
    read_csv()      用于读取文本文件
    read_excel()    用于读取文本文件
    read_json()     用于读取json文件
    read_sql_query()读取sql语句的
    
    通用流程:
    1-导入库import pandas as pd
    2-找到文件所在位置(绝对路径=全称)(相对路径=和程序在同一个文件夹中的路径的简称)
    3-变量名=pd.读写操作方法(文件路径,具体的筛选条件,...)
    ./  当前路径
    ../ 上一级
    将csv中的数据转换为DataFrame对象是非常便捷。和一般文件读写不一样,它不需要你做打开文件、
    读取文件、关闭文件等操作。相反,您只需要一行代码就可以完成上述所有步骤,并将数据存储在
    DataFrame中。
    
    '''
    import pandas as pd
    # 输入参数:数据输入的路径【可以是文件路径,可以是URL,也可以是实现read方法的任意对象。】
    df = pd.read_csv('s')
    print(df, type(df))
    # Pandas默认使用utf-8读取文件
    print()
    import pandas as pd
    
    lxw = open(r"t.csv", encoding='utf-8')
    print(pd.read_csv(lxw))
    print()
    import os
    
    # 打印当前目录
    print(os.getcwd())
    로그인 후 복사

    관련 지식 공식 홈페이지 링크

    팬더는 테이블 형태의 데이터를 먼저 읽고 분석해야 합니다

    학습 세부 버전:

    # 1:
    import pandas as pd
    df = pd.read_csv('nba.csv')
    print(df)
    # 2:
    import pandas as pd
    df = pd.read_csv('nba.csv')
    # to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ... 代替(如上)
    print(df.to_string())
    # 3:
    import pandas as pd
    
    # 三个字段 name, site, age
    nme = ["Google", "Runoob", "Taobao", "Wiki"]
    st = ["www.google.com", "www.runoob.com", "www.taobao.com", "www.wikipedia.org"]
    ag = [90, 40, 80, 98]
    # 字典
    dict = {'name': nme, 'site': st, 'age': ag}
    df = pd.DataFrame(dict)
    # 保存 dataframe
    print(df.to_csv('site.csv'))
    # 4:
    import pandas as pd
    
    df = pd.read_csv('正解1.csv')
    # head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行
    # print(df.head())
    # df.head(50).to_csv('site4.csv')
    df.tail(10).to_csv('site4.csv')
    print("over!")
    # 5:
    import pandas as pd
    df = pd.read_csv('nba.csv')
    # 读取前面 10 行
    print(df.head(10))
    # 6:
    import pandas as pd
    df = pd.read_csv('nba.csv')
    # tail( n ) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN
    print(df.tail())
    # 7:
    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    #  读取末尾 10 行
    print(df.tail(10))
    # 8:
    import pandas as pd
    df = pd.read_csv('正解1.csv')
    # info() 方法返回表格的一些基本信息
    print(df.info())
    # non-null 为非空数据,我们可以看到上面的信息中,总共 458 行,College 字段的空值最多
    로그인 후 복사
    • 모든 csv, excel 파일은 리소스에서 추출 가능하며, 없는 파일은 직접 보완 가능합니다!

    • 팁: Pandas 라이브러리가 미리 설치되어 있어야 합니다. [터미널 설치 명령어: pip install pandas]

    import pandas as pd
    lxw = pd.read_csv('nba.csv')
    # 查看前几行数据
    print(lxw.head())
    # 查看索引列
    print(lxw.index)
    # 查看列名列表
    print(lxw.columns)
    # 查看数据的形状(返回行、列数)
    print(lxw.shape)
    # 查看每列的数据类型
    print(lxw.dtypes)
    print()
    # 读取txt文件,自己指定分隔符、列名
    fpath = 'D:\PyCharm\数学建模大赛\数据分析-上-2\Python成绩.csv'
    
    lxw = pd.read_csv(
        fpath,
        sep=',',
        header=None,
        names=['name', 'Python-score']
    )
    # print(lxw)
    lxw.to_csv('Python成绩2.csv')
    # 读取excel文件:
    import pandas as pd
    lxw = pd.read_excel('暑假培训学习计划.xls')
    print(lxw)
    로그인 후 복사

    참고: 마지막에 [엑셀 파일 읽기]에 오류가 있으면 터미널에 pip install xlrd를 설치하세요. pip install xlrd

    2-3 pandas数据结构

    '''
    1-Series:  一维数据,一行或一列
    【Series是一种类似于一维数组的对象,它由一组数据(不同数据类型)以		    及一组与之相关的数据标签(即索引)组成】
    2-DataFrame:二维数据,整个表格,多行多列
    '''
    import pandas as pd
    # 1-1仅用数据列表即可产生最简单的Series
    lxw = pd.Series([1, 'a', 5.2, 6])
    print(lxw)      # 运行结果解说:左边为索引,右边为数据
    # 获取索引
    print(lxw.index)
    # 获取数据
    print(lxw.values)
    print()
    # 1-2 创建一个具有索引标签的Series
    lxw2 = pd.Series([5, '程序人生6', 666, 5.2], index=['sz', 'gzh', 'jy', 'xy'])
    print(lxw2)
    print(lxw2.index)
    # 写入文件当中
    lxw2.to_csv('gzh.csv')
    print()
    # 1-3 使用过Python字典创建Series
    lxw_ej = {'python': 390, 'java': 90, 'mysql': 90}
    lxw3 = pd.Series(lxw_ej)
    print(lxw3)
    # 1-4 根据标签索引查询数据
    print(lxw3['java'])
    print(lxw2['gzh'])
    print(lxw2[['gzh', 'jy']])
    print(type(lxw2[['gzh', 'jy']]))
    print(lxw[2])
    print(type(lxw[2]))
    print()
    # 2 根据多个字典序列创建dataframe
    lxw_cj = {
        'ps': [86, 92, 88, 82, 80],
        'windows操作系统': [84, 82, 88, 80, 92],
        '网页设计与制作': [92, 88, 97, 98, 83]
    }
    df = pd.DataFrame(lxw_cj)
    
    # print(df)
    # df.to_excel('lxw_cj.xlsx')      # 须提前安装好openxlsx,即pip install openpyxl[可在终端安装]
    print("over!")
    print(df.dtypes)
    print(df.columns)
    print(df.index)
    print()
    # 3-从DataFrame中查询Series
    '''
    ·如果只查询一行、一列的话,那么返回的就是pd.Series
    ·如果查询多行、多列时,返回的就是pd.DataFrame
    
    '''
    # 一列:
    print(df['ps'])
    print(type(df['ps']))
    # 多列:
    print(df[['ps', 'windows操作系统']])
    print(type(df[['ps', 'windows操作系统']]))
    
    print()
    # 一行:
    print(df.loc[1])
    print(type(df.loc[1]))
    # 多行:
    print(df.loc[1:3])
    print(type(df.loc[1:3]))
    로그인 후 복사

    DataFrame 加强

    2-3-1 pandas数据结构之DataFrame
    # DataFrame数据类型
    '''
    DataFrame是Pandas的重要数据结构之一,也是在使用数据分析过程中最常用的结构之一,
    可以这么说,掌握了Dataframe的用法,你就 拥有了学习数据分析的基本能力。
    
    '''
    # 认识Dataframe结构:
    '''
    Dataframe是一个表格型的数据结构,既有行标签,又有列标签,她也被称异构数据表,所谓
    异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。
    
    Dataframe的每一列数据都可以看成一个Series结构,只不过,Dataframe为每列数据值增加了
    一个标签。因此Dataframe其实是从Series的基础上演变而来,并且他们有相同的标签,在数据分析
    任务中Dataframe的应用非常广泛,因此描述数据的更为清晰、直观。
    
    同Series一样,Dataframe自带行标签索引,默认为“隐式索引”。
    当然,你也可以用“显式索引”的方式来设置行标签。
    
    '''
    # 特点:
    '''
    Dataframe   每一列的标签值允许使用不同的数据类型;
    Dataframe   是表格型的数据结构,具有行和列;
    Dataframe   中的每个数据都可以被修改
    Dataframe   结构的行数、列数允许增加或者删除
    Dataframe   有两个方向的标签轴,分别是行标签和列标签
    Dataframe   可以对行和列执行算术运算
    
    '''
    # DataFrame 构造方法如下:
    
    # pandas.DataFrame( data, index, columns, dtype, copy)
    '''
    data:输入的数据,可以是ndarray, series, list, dict, 标量以及一个Dataframe;
    
    index:行标签,如果没有传递index值,则默认行标签是RangeIndex(0, 1, 2, ..., n)代表data的元素个数;
    
    columns:列标签,如果没有传递columns值,则默认列标签是RangIndex(0, 1, 2, ..., n);
    
    dtype:要强制的数据类型,只允许使用一种数据类型,如果没有,自行推断;
    
    copy:从输入复制数据。对于dict数据, copy=True, 重新复制一份。对于Dataframe或者ndarray输入,类似于copy=False,它用的是试图。
    
    '''
    # 1: 使用普通列表创建
    import pandas as pd
    lxw = [5, 2, 1, 3, 1, 4]
    df = pd.DataFrame(lxw)
    df2 = pd.Series(lxw)
    print(df)
    print(df2)
    print()
    # 2:使用嵌套列表创建
    import pandas as pd
    lxw = [['lxw', 21], ['cw', 23], ['tzs', 22]]
    df3 = pd.DataFrame(lxw, columns=['Name', 'Age'])
    print(df3)
    # 指定数值元素的数据类型为float
    # 注:dtype只能设置一个,设置多个列的数据类型,需要使用其他公式
    print()
    # 分配列标签注意点
    import pandas as pd
    # 分配列标签
    lxw2 = [['lxw', '男', 21, 6666], ['cw', '女', 22, 6520], ['ky', '女', 20, 5200], ['tzs', '男', 22, 6523]]
    # int满足某列特征,会自动使用,不满足,则会自动识别
    df = pd.DataFrame(lxw2, columns=['Name', 'xb', 'age', 'gz'], dtype=int)
    print(df)
    print(df['Name'].dtype)
    print()
    # ~字典创建:
    import pandas as pd
    lxw3 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 8, 'c': 9}]
    df = pd.DataFrame(lxw3, index=['first', 'second'])
    print(df)
    # 注:如果其中某些元素缺失,也就是字典的key无法找到对应的value将使用NaN代替
    print()
    # 使用列表嵌套字典创建一个DataFrame对象
    import pandas as pd
    # lxw3
    df1 = pd.DataFrame(lxw3, index=['first', 'second'], columns=['a', 'b'])
    df2 = pd.DataFrame(lxw3, index=['first', 'second'], columns=['a', 'b2'])
    print(df1)
    print("============================================")
    print(df2)
    로그인 후 복사
    import pandas as pd
    data = [['lxw', 10], ['wink', 12], ['程序人生6', 13]]
    df = pd.DataFrame(data, columns=['Site', 'Age'], dtype=float)
    print(df)
    # 1:使用 ndarrays 创建
    import pandas as pd
    data = {'Site': ['lxw', '程序人生6', 'wink'], 'Age': [10, 12, 13]}
    df = pd.DataFrame(data)
    print(df)
    # 2:还可以使用字典(key/value),其中字典的 key 为列名:
    import pandas as pd
    data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
    df = pd.DataFrame(data)
    print(df)
    # 没有对应的部分数据为 NaN
    # 3:Pandas 可以使用 loc 属性返回指定行的数据,如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:
    import pandas as pd
    data = {
      "calories": [420, 380, 390],
      "duration": [50, 40, 45]
    }
    # 数据载入到 DataFrame 对象
    df = pd.DataFrame(data)
    # 返回第一行
    print(df.loc[0])
    # 返回第二行
    print(df.loc[1])
    print(df.loc[2])
    # 注意:返回结果其实就是一个 Pandas Series 数据。
    # 也可以返回多行数据,使用 [[ ... ]] 格式,... 为各行的索引,以逗号隔开:
    로그인 후 복사
    2-3-1 Pandas 数据结构之Series
    # Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。
    '''
    Series 由索引(index)和列组成,函数如下:
    pandas.Series( data, index, dtype, name, copy)
    参数说明:
    data:一组数据(ndarray 类型)。
    index:数据索引标签,如果不指定,默认从 0 开始。
    dtype:数据类型,默认会自己判断。
    name:设置名称。
    copy:拷贝数据,默认为 False。
    
    '''
    import pandas as pd
    lxw = [1, 2, 3]
    myvar = pd.Series(lxw)
    print(myvar)
    print()
    # 如果没有指定索引,索引值就从 0 开始,我们可以根据索引值读取数据
    print(myvar[1])
    print()
    import pandas as pd
    lxw = ["Google", "Runoob", "Wiki"]
    myvar2 = pd.Series(lxw, index=['x', 'y', 'z'])
    print(myvar2)
    print()
    # 根据索引值读取数据:
    print(myvar2['y'])
    print()
    # 也可以使用 key/value 对象,类似字典来创建 Series
    import pandas as pd
    lxw = {1: "Google", 2: "Runoob", 3: "Wiki"}
    myvar3 = pd.Series(lxw)
    print(myvar3)
    print()
    # 只需要字典中的一部分数据,只需要指定需要数据的索引即可
    myvar3 = pd.Series(lxw, index=[1, 2])
    print(myvar3)
    print()
    # 设置 Series 名称参数
    import pandas as pd
    lxw = {1: "Google", 2: "Runoob", 3: "Wiki"}
    myvar4 = pd.Series(lxw, index=[1, 3], name="lxw-pro")
    print(myvar4)
    로그인 후 복사

    2-4查询数据

    # Pandas查询数据的四种方法:
    '''
    1-df.loc方法,根据行、列的标签值查询
    2-df.iloc方法,根据行、列的数字位置查询
    3-df.where方法
    4-df.query方法
    建议:.loc既能查询,又能覆盖写入,强烈推荐!
    
    '''
    # Pandas使用df.loc查询数据的方法:
    '''
    1-使用单个label值查询数据
    2-使用值列表批量查询
    3-使用数值区间进行范围查询
    4-使用条件表达式查询
    5-调用函数查询
    
    '''
    # 注:以上方法,即适用于行,也使用于列
    import pandas as pd
    df = pd.read_csv('sites.csv')
    # print(df.head(10))
    df.set_index('create_dt', inplace=True)
    # print(df.index)
    a = df.index
    # 去重->转为列表->排顺序
    qc = sorted(list(set(a)))
    # print(qc)
    로그인 후 복사
    # 替换掉利润率当中的后缀%
    df.loc[:, 'lrl'] = df['lrl'].str.replace("%", "").astype('int32')   # astype()    对数据类型进行转换
    로그인 후 복사

    astype()相关知识阐述:

    '''
    Python中与数据类型相关函数及属性有如下三个:type/dtype/astype
    type()    返回参数的数据类型    
    dtype    返回数组中元素的数据类型    
    astype()    对数据类型进行转换    
    你可以使用 .astype() 方法在不同的数值类型之间相互转换。a.astype(int).dtype # 将 a 的数值类型从 float64 转换为 int
    '''
    로그인 후 복사

    这里运行的话,就会报错:


    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    后面上网查找解决类似的问题,一番查找之后,终于解决问题

    # 替换掉利润率当中的后缀%df['lrl'] = df['lrl'].map(lambda x: x.rstrip('%'))print(df)
    로그인 후 복사

    运行效果如下:

    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    # 查询数据类型print(df.dtypes)# 打印文件前几行print(df.head())
    로그인 후 복사

    2-4-1 使用单个label值查询数据

    print(df.loc['2016-12-02', 'yye'])   # 得到指定时间里相对应的的单个值
    로그인 후 복사

    运行结果如下:
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    # 得到指定时间内相对应的的一个Seriesprint(df.loc['2016-11-30', ['sku_cost_prc', 'sku_sale_prc']])
    로그인 후 복사

    运行结果如下:
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    2-4-2使用值列表批量查询

    # 得到Seriesprint(df.loc[['2016-12-05', '2016-12-31'], 'sku_sale_prc'])
    로그인 후 복사

    运行结果如下:
    提示:图有点长,故只截取了部分
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견2-3 팬더 데이터 구조

    # 得到DataFrameprint(df.loc[['2016-12-08', '2016-12-12'], ['sku_cnt', 'sku_sale_prc']])
    로그인 후 복사

    DataFrame 개선

    2-3-1 팬더 데이터 구조 DataFrame
    # 行index按区间:print(df.loc['2016-12-02': '2016-12-08'], ['yye'])
    로그인 후 복사
    로그인 후 복사
    # 列index按区间:print(df.loc['2016-12-12', 'yye': 'lrl'])
    로그인 후 복사
    로그인 후 복사
    2-3-1 팬더 데이터 구조 시리즈
    # 行和列都按区间查询:print(df.loc['2016-11-30': '2016-12-02', 'sku_cnt': 'lrl'])
    로그인 후 복사
    로그인 후 복사
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견 2-4 데이터 쿼리

    # 简单条件查询,营业额低于3的列表print(df.loc[df[&#39;yye&#39;] < 3, :])# 可观察营业额的boolean条件print(df[&#39;yye&#39;] < 3)
    로그인 후 복사
    로그인 후 복사
    # 复杂条件查询:print(df.loc[(df[&#39;yye&#39;] < 5) & (df[&#39;yye&#39;] > 2) & (df[&#39;sku_cnt&#39;] > 1), :])
    로그인 후 복사
    로그인 후 복사

    astype() 관련 지식 설명:🎜🎜
    # 再次观察这里的boolean条件print((df[&#39;yye&#39;] < 5) & (df[&#39;yye&#39;] > 2) & (df[&#39;sku_cnt&#39;] > 1))
    로그인 후 복사
    로그인 후 복사
    🎜🎜 여기서 실행하면 오류가 발생합니다:🎜🎜🎜🎜파이썬의 세 가지 주요 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견🎜🎜나중에 비슷한 문제를 해결하기 위해 온라인에서 검색했습니다. 검색해 보니 드디어 문제가 해결되었습니다🎜
    # 直接写lambda表达式print(df.loc[lambda df: (df[&#39;yye&#39;] < 4) & (df[&#39;yye&#39;] > 2), :])
    로그인 후 복사
    로그인 후 복사
    🎜🎜실행 효과는 다음과 같습니다.🎜🎜🎜세 가지 주요 Python 모델과 가장 일반적으로 사용되는 10가지 알고리즘 인스턴스 검색🎜
    # 函数式编程的本质:# 函数本身可以像变量一样传递def my_query(df):    return df.index.str.startswith(&#39;2016-12-08&#39;)print(df.loc[my_query, :])
    로그인 후 복사
    로그인 후 복사
    🎜2-4-1 단일 레이블 값을 사용하여 데이터 쿼리🎜rrreee🎜실행 결과는 다음과 같습니다.🎜3가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견🎜rrreee🎜The running 결과는 다음과 같습니다: 🎜3가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 모델 알아보기 알고리즘 예제🎜🎜2-4-2 값 목록 일괄 쿼리 사용🎜rrreee🎜실행 결과는 다음과 같습니다.🎜Tip: 사진이 좀 길어서 일부만 캡쳐했습니다🎜🎜🎜rrreee🎜달리기의 부분 결과는 다음과 같습니다. 🎜🎜🎜🎜2-4-3 범위 쿼리에 숫자 간격을 사용하세요🎜
    # 行index按区间:print(df.loc[&#39;2016-12-02&#39;: &#39;2016-12-08&#39;], [&#39;yye&#39;])
    로그인 후 복사
    로그인 후 복사

    运行部分结果如下:
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    # 列index按区间:print(df.loc[&#39;2016-12-12&#39;, &#39;yye&#39;: &#39;lrl&#39;])
    로그인 후 복사
    로그인 후 복사

    运行部分结果如下:
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    # 行和列都按区间查询:print(df.loc[&#39;2016-11-30&#39;: &#39;2016-12-02&#39;, &#39;sku_cnt&#39;: &#39;lrl&#39;])
    로그인 후 복사
    로그인 후 복사

    运行部分结果如下:
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    2-4-4 使用条件表达式查询

    # 简单条件查询,营业额低于3的列表print(df.loc[df[&#39;yye&#39;] < 3, :])# 可观察营业额的boolean条件print(df[&#39;yye&#39;] < 3)
    로그인 후 복사
    로그인 후 복사
    # 复杂条件查询:print(df.loc[(df[&#39;yye&#39;] < 5) & (df[&#39;yye&#39;] > 2) & (df[&#39;sku_cnt&#39;] > 1), :])
    로그인 후 복사
    로그인 후 복사

    运行部分结果如下:
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    # 再次观察这里的boolean条件print((df[&#39;yye&#39;] < 5) & (df[&#39;yye&#39;] > 2) & (df[&#39;sku_cnt&#39;] > 1))
    로그인 후 복사
    로그인 후 복사

    运行部分结果如下:
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    2-4-5 调用函数查询

    # 直接写lambda表达式print(df.loc[lambda df: (df[&#39;yye&#39;] < 4) & (df[&#39;yye&#39;] > 2), :])
    로그인 후 복사
    로그인 후 복사

    运行部分如果如下:
    세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견

    # 函数式编程的本质:# 函数本身可以像变量一样传递def my_query(df):    return df.index.str.startswith(&#39;2016-12-08&#39;)print(df.loc[my_query, :])
    로그인 후 복사
    로그인 후 복사

    遇到的问题:

    1、虽说三大模型十大算法【简介】讲的很是明确,可在网上要查询相关模型或者算法还是很杂乱的,不是很清楚自己适合那一版本。
    2、学习pandas过程当中遇到查询数据时遇【替换掉利润率当中的后缀%】 出现差错,后面通过网上查询解决问题。

    위 내용은 세 가지 주요 Python 모델과 일반적으로 사용되는 상위 10가지 알고리즘 예제 발견의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

    본 웹사이트의 성명
    본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

    핫 AI 도구

    Undresser.AI Undress

    Undresser.AI Undress

    사실적인 누드 사진을 만들기 위한 AI 기반 앱

    AI Clothes Remover

    AI Clothes Remover

    사진에서 옷을 제거하는 온라인 AI 도구입니다.

    Undress AI Tool

    Undress AI Tool

    무료로 이미지를 벗다

    Clothoff.io

    Clothoff.io

    AI 옷 제거제

    Video Face Swap

    Video Face Swap

    완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

    뜨거운 도구

    메모장++7.3.1

    메모장++7.3.1

    사용하기 쉬운 무료 코드 편집기

    SublimeText3 중국어 버전

    SublimeText3 중국어 버전

    중국어 버전, 사용하기 매우 쉽습니다.

    스튜디오 13.0.1 보내기

    스튜디오 13.0.1 보내기

    강력한 PHP 통합 개발 환경

    드림위버 CS6

    드림위버 CS6

    시각적 웹 개발 도구

    SublimeText3 Mac 버전

    SublimeText3 Mac 버전

    신 수준의 코드 편집 소프트웨어(SublimeText3)

    PHP와 Python : 다른 패러다임이 설명되었습니다 PHP와 Python : 다른 패러다임이 설명되었습니다 Apr 18, 2025 am 12:26 AM

    PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

    Python vs. JavaScript : 학습 곡선 및 사용 편의성 Python vs. JavaScript : 학습 곡선 및 사용 편의성 Apr 16, 2025 am 12:12 AM

    Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

    PHP와 Python 중에서 선택 : 가이드 PHP와 Python 중에서 선택 : 가이드 Apr 18, 2025 am 12:24 AM

    PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

    Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

    VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

    Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

    VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

    PHP와 Python : 그들의 역사에 깊은 다이빙 PHP와 Python : 그들의 역사에 깊은 다이빙 Apr 18, 2025 am 12:25 AM

    PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

    터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

    vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

    VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

    VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

    See all articles