기계 학습은 새로운 공격 표면을 생성하므로 전문적인 방어가 필요합니다.
거의 모든 업계의 기업이 인공 지능(AI) 기술을 하드웨어 및 소프트웨어 제품에 통합함에 따라 기계 학습(ML) 입력 및 출력이 고객에게 더욱 광범위하게 제공되고 있습니다. 이는 자연스럽게 악의적인 행위자들의 관심을 끌게 된다.
HiddenLayer CEO Christopher Sestito는 기업이 걱정해야 할 머신러닝 보안 고려 사항 및 관련 위협에 대해 이야기합니다.
기업들은 머신러닝이 열어줄 수 있는 길을 천천히 깨닫고 있습니다. 하지만 그들은 사이버 보안에도 세심한 주의를 기울이고 있나요?
기계 학습 자산을 보호하는 데 중점을 두는 기업은 거의 없으며, 기계 학습 보안에 리소스를 할당하는 기업은 더욱 적습니다. 여기에는 예산 우선순위 경쟁, 인재 부족, 최근까지 이 문제를 해결하는 보안 제품 부족 등 여러 가지 이유가 있습니다.
지난 10년 동안 우리는 모든 업계에서 사용 가능한 데이터로 모든 사용 사례를 처리하기 위해 이전과는 전혀 다른 방식으로 AI/머신 러닝을 채택하는 것을 보았습니다. 장점은 입증되었지만 다른 신기술에서 본 것처럼 이는 빠르게 악의적인 행위자의 새로운 공격 표면이 됩니다.
기계 학습 운영이 발전함에 따라 데이터 과학 팀은 효과성, 효율성, 신뢰성 및 설명 가능성 측면에서 더욱 성숙한 AI 생태계를 구축하고 있지만 아직 보안이 우선시되지 않았습니다. 기계 학습 L 시스템을 공격하려는 동기가 명확하고, 공격 도구가 사용 가능하고 사용하기 쉽고, 잠재적인 대상이 전례 없는 속도로 증가하고 있기 때문에 이는 더 이상 엔터프라이즈 기업에 실행 가능한 경로가 아닙니다.
공격자는 공개 기계 학습 입력을 어떻게 활용할 수 있습니까?
기계 학습 모델이 점점 더 많은 생산 시스템에 통합됨에 따라 하드웨어 및 소프트웨어 제품, 웹 애플리케이션, 모바일 애플리케이션 등에서 고객에게 시연되고 있습니다. 종종 "에지 AI"라고 불리는 이러한 추세는 우리가 매일 사용하는 모든 기술에 놀라운 의사 결정 및 예측 기능을 제공합니다. 점점 더 많은 최종 사용자에게 기계 학습을 제공하는 동시에 동일한 기계 학습 자산을 위협 행위자에게 노출합니다.
네트워크를 통해 노출되지 않는 기계 학습 모델도 위험합니다. 이러한 모델은 전통적인 사이버 공격 기술을 통해 접근할 수 있어 적대적인 기계 학습 기회를 위한 길을 열어줍니다. 위협 행위자가 액세스 권한을 얻으면 여러 유형의 공격을 사용할 수 있습니다. 추론 공격은 모델을 매핑하거나 "역전"시키려고 시도하여 모델의 약점을 악용하거나, 전체 제품의 기능을 변조하거나, 모델 자체를 복사하여 훔칠 수 있습니다.
사람들은 바이러스 백신이나 기타 보호 메커니즘을 우회하기 위해 보안 공급업체를 공격하는 실제 사례를 보았습니다. 또한 공격자는 모델을 훈련하는 데 사용되는 데이터를 오염시켜 시스템이 잘못 학습하고 공격자에게 유리한 편향된 의사 결정을 내리도록 선택할 수도 있습니다.
기업이 특히 걱정해야 하는 머신러닝 시스템에 대한 어떤 위협이 있나요?
모든 적대적인 머신러닝 공격 유형을 방어해야 하지만 기업마다 우선순위가 다릅니다. 사기 거래를 식별하기 위해 기계 학습 모델을 활용하는 금융 기관은 추론 공격을 방어하는 데 중점을 둘 것입니다.
공격자가 사기 탐지 시스템의 강점과 약점을 이해하면 이를 사용하여 모델을 완전히 우회하여 탐지되지 않도록 기술을 변경할 수 있습니다. 의료 기업은 데이터 오염에 더 민감할 수 있습니다. 의료 분야는 방대한 과거 데이터 세트를 사용하여 기계 학습을 통해 결과를 예측하는 얼리 어답터였습니다.
데이터 중독 공격은 오진, 약물 실험 결과 변경, 환자 그룹 허위 진술 등으로 이어질 수 있습니다. 보안 기업 자체도 현재 랜섬웨어나 백도어 네트워크를 배포하는 데 적극적으로 사용되는 머신러닝 회피 공격에 주력하고 있습니다.
기계 학습 기반 시스템을 배포할 때 최고 정보 보안 책임자(CISO)가 염두에 두어야 할 주요 보안 고려 사항은 무엇입니까?
오늘날 CISO(최고 정보 보안 책임자)에게 줄 수 있는 최고의 조언은 새로운 기술에서 배운 패턴을 수용하라는 것입니다. 클라우드 인프라의 발전과 마찬가지로 기계 학습 배포는 전문적인 방어가 필요한 새로운 공격 표면을 나타냅니다. Microsoft의 Counterfit 또는 IBM의 Adversarial Robustness Toolbox와 같은 오픈 소스 공격 도구를 사용하여 적대적인 기계 학습 공격에 대한 진입 장벽이 매일 낮아지고 있습니다.
또 다른 주요 고려 사항은 이러한 공격 중 상당수가 명확하지 않으며, 공격을 찾지 않으면 이러한 공격이 발생하고 있다는 사실을 이해하지 못할 수도 있다는 것입니다. 보안 실무자로서 우리는 랜섬웨어에 익숙합니다. 랜섬웨어는 비즈니스가 손상되었고 데이터가 잠겼거나 도난당했다는 분명한 표시입니다. 적대적인 기계 학습 공격은 장기간에 걸쳐 발생하도록 맞춤화될 수 있으며, 데이터 중독과 같은 일부 공격은 느리지만 영구적인 피해를 주는 프로세스가 될 수 있습니다.
위 내용은 기계 학습은 새로운 공격 표면을 생성하므로 전문적인 방어가 필요합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

C++에서 기계 학습 알고리즘의 구현에는 다음이 포함됩니다. 선형 회귀: 연속 변수를 예측하는 데 사용됩니다. 단계에는 데이터 로드, 가중치 및 편향 계산, 매개변수 업데이트 및 예측이 포함됩니다. 로지스틱 회귀: 이산형 변수를 예측하는 데 사용됩니다. 이 프로세스는 선형 회귀와 유사하지만 예측에 시그모이드 함수를 사용합니다. 지원 벡터 머신(Support Vector Machine): 지원 벡터 계산 및 레이블 예측을 포함하는 강력한 분류 및 회귀 알고리즘입니다.
