listen command
nginx는 고성능 http 서버이며 네트워크 처리가 핵심입니다. 네트워크 초기화를 이해하면 nginx 네트워크 처리에 대한 이해가 깊어집니다. 두 가지 주요 네트워크 관련 구성 명령이 있습니다: Listen 및 sever_name. Listen 명령은 nginx 수신 주소를 설정합니다. IP 프로토콜의 경우 이 주소는 주소 및 포트입니다. Unix 도메인 소켓 프로토콜의 경우 이 주소는 경로입니다. 주소는 하나만 지정할 수 있습니다. 호스트 이름이 되세요
이번 글부터 Listen 명령어의 구문 분석 과정을 분석해 보겠습니다. Listen 명령어의 구성은 다음과 같습니다. nginx.org 매뉴얼에서 Listen 사용법을 확인할 수 있습니다.
listen address[:port] [default_server] [setfib=number] [backlog=number] [rcvbuf=size] [sndbuf=size] [accept_filter=filter] [deferred] [bind] [ipv6only=on|off] [ssl] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];
The 듣기 명령어가 전달하는 매개변수는 매우 복잡합니다. 그러나 일반적으로 덜 일반적으로 사용되는 매개변수에는 거의 주의를 기울이지 않습니다. 다음은 일반적으로 사용되는 몇 가지 구성 방법입니다.
listen 127.0.0.1:8000; listen 127.0.0.1 不加端口,默认监听80端口; listen 8000 listen *:8000 listen localhost:8000
listen 명령에서 uri 및 포트 구문 분석
위 내용에서 알 수 있듯이 Listen에는 많은 용도가 있습니다. 구문 분석할 때 수신 명령의 포트 번호와 uri 부분을 가져와야 합니다. nginx는 수신 명령을 구문 분석할 때 ngx_parse_url() 메서드를 제공합니다.
ngx_int_t ngx_parse_url(ngx_pool_t *pool, ngx_url_t *u) { u_char *p; size_t len; p = u->url.data; len = u->url.len; // 这里是解析unix domain的协议 if (len >= 5 && ngx_strncasecmp(p, (u_char *) "unix:", 5) == 0) { return ngx_parse_unix_domain_url(pool, u); } // 解析ipv6协议 if (len && p[0] == '[') { return ngx_parse_inet6_url(pool, u); } // 解析ipv4协议 return ngx_parse_inet_url(pool, u); }
우리는 ipv4 프로토콜을 사용하고 있습니다. 여기서는 ngx_parse_inet_url() 함수를 분석합니다.
// u.url = "80"; // u.listen = 1; // u.default_port = 80; static ngx_int_t ngx_parse_inet_url(ngx_pool_t *pool, ngx_url_t *u) { u_char *p, *host, *port, *last, *uri, *args; size_t len; ngx_int_t n; struct sockaddr_in *sin; #if (ngx_have_inet6) struct sockaddr_in6 *sin6; #endif u->socklen = sizeof(struct sockaddr_in); sin = (struct sockaddr_in *) &u->sockaddr; sin->sin_family = af_inet;// ipv4类型 u->family = af_inet; host = u->url.data; // "80" last = host + u->url.len; // host的最后字符的位置 port = ngx_strlchr(host, last, ':'); // 找到port, 这里为 null uri = ngx_strlchr(host, last, '/'); // 找到uri,这里为 null args = ngx_strlchr(host, last, '?'); // 找到参数args,这里为 null if (args) { if (uri == null || args < uri) { uri = args; } } if (uri) { if (u->listen || !u->uri_part) { u->err = "invalid host"; return ngx_error; } u->uri.len = last - uri; u->uri.data = uri; last = uri; if (uri < port) { port = null; } } if (port) { port++; len = last - port; n = ngx_atoi(port, len); if (n < 1 || n > 65535) { u->err = "invalid port"; return ngx_error; } u->port = (in_port_t) n; sin->sin_port = htons((in_port_t) n); u->port_text.len = len; u->port_text.data = port; last = port - 1; } else { if (uri == null) { if (u->listen) { /* test value as port only */ n = ngx_atoi(host, last - host); if (n != ngx_error) { if (n < 1 || n > 65535) { u->err = "invalid port"; return ngx_error; } u->port = (in_port_t) n; sin->sin_port = htons((in_port_t) n); u->port_text.len = last - host; u->port_text.data = host; u->wildcard = 1; return ngx_ok; } } } u->no_port = 1; u->port = u->default_port; sin->sin_port = htons(u->default_port); } len = last - host; if (len == 0) { u->err = "no host"; return ngx_error; } u->host.len = len; u->host.data = host; if (u->listen && len == 1 && *host == '*') { sin->sin_addr.s_addr = inaddr_any; u->wildcard = 1; return ngx_ok; } sin->sin_addr.s_addr = ngx_inet_addr(host, len); if (sin->sin_addr.s_addr != inaddr_none) { if (sin->sin_addr.s_addr == inaddr_any) { u->wildcard = 1; } u->naddrs = 1; u->addrs = ngx_pcalloc(pool, sizeof(ngx_addr_t)); if (u->addrs == null) { return ngx_error; } sin = ngx_pcalloc(pool, sizeof(struct sockaddr_in)); if (sin == null) { return ngx_error; } ngx_memcpy(sin, &u->sockaddr, sizeof(struct sockaddr_in)); u->addrs[0].sockaddr = (struct sockaddr *) sin; u->addrs[0].socklen = sizeof(struct sockaddr_in); p = ngx_pnalloc(pool, u->host.len + sizeof(":65535") - 1); if (p == null) { return ngx_error; } u->addrs[0].name.len = ngx_sprintf(p, "%v:%d", &u->host, u->port) - p; u->addrs[0].name.data = p; return ngx_ok; } if (u->no_resolve) { return ngx_ok; } if (ngx_inet_resolve_host(pool, u) != ngx_ok) { return ngx_error; } u->family = u->addrs[0].sockaddr->sa_family; u->socklen = u->addrs[0].socklen; ngx_memcpy(&u->sockaddr, u->addrs[0].sockaddr, u->addrs[0].socklen); switch (u->family) { #if (ngx_have_inet6) case af_inet6: sin6 = (struct sockaddr_in6 *) &u->sockaddr; if (in6_is_addr_unspecified(&sin6->sin6_addr)) { u->wildcard = 1; } break; #endif default: /* af_inet */ sin = (struct sockaddr_in *) &u->sockaddr; if (sin->sin_addr.s_addr == inaddr_any) { u->wildcard = 1; } break; } return ngx_ok; }
이 함수는 우리 구성 파일에서 포트 번호가 80이고 청취가 없습니다. 따라서 u->wildcard = 1은 이것이 와일드카드이고 서버의 모든 IP 주소 중 이 포트 번호를 수신하려는 것을 의미합니다.
listen 명령 구문 분석
소스 코드에서 Listen 구성을 살펴보겠습니다.
{ ngx_string("listen"), ngx_http_srv_conf|ngx_conf_1more, ngx_http_core_listen, ngx_http_srv_conf_offset, 0, null }
구성 파일에서 Listen은 서버 모듈에만 나타날 수 있으며 여러 매개 변수를 가질 수 있음을 알 수 있습니다.
해당 처리 함수는 ngx_http_core_listen입니다. 아래에서 이 함수를 분석해 보겠습니다. 잘못된 판단을 내리는 일부 코드를 삭제했습니다.
static char * ngx_http_core_listen(ngx_conf_t *cf, ngx_command_t *cmd, void *conf) { ngx_http_core_srv_conf_t *cscf = conf; ngx_str_t *value, size; ngx_url_t u; ngx_uint_t n; ngx_http_listen_opt_t lsopt; cscf->listen = 1; value = cf->args->elts; ngx_memzero(&u, sizeof(ngx_url_t)); u.url = value[1]; u.listen = 1; u.default_port = 80; if (ngx_parse_url(cf->pool, &u) != ngx_ok) { return ngx_conf_error; } ngx_memzero(&lsopt, sizeof(ngx_http_listen_opt_t)); ngx_memcpy(&lsopt.sockaddr.sockaddr, &u.sockaddr, u.socklen); lsopt.socklen = u.socklen; lsopt.backlog = ngx_listen_backlog; lsopt.rcvbuf = -1; lsopt.sndbuf = -1; #if (ngx_have_setfib) lsopt.setfib = -1; #endif #if (ngx_have_tcp_fastopen) lsopt.fastopen = -1; #endif lsopt.wildcard = u.wildcard; #if (ngx_have_inet6) lsopt.ipv6only = 1; #endif (void) ngx_sock_ntop(&lsopt.sockaddr.sockaddr, lsopt.socklen, lsopt.addr, ngx_sockaddr_strlen, 1); for (n = 2; n < cf->args->nelts; n++) { if (ngx_strcmp(value[n].data, "default_server") == 0 || ngx_strcmp(value[n].data, "default") == 0) { lsopt.default_server = 1; continue; } // 这里面的其他代码都是处理listen的各种参数,对我们这里的分析没有用处 } if (ngx_http_add_listen(cf, cscf, &lsopt) == ngx_ok) { return ngx_conf_ok; } return ngx_conf_error; }
이 함수의 전체 프로세스는 Listen 명령의 매개 변수를 구문 분석하고 ngx_http_listen_opt_t를 생성하는 것입니다. 이름에서 알 수 있듯이 이 구조는 일부 수신 포트 옵션(수신 포트 옵션)을 저장하는 것입니다. 여기서는 ngx_parse_url() 함수가 호출됩니다. 위에서 이를 분석했습니다. 이 함수의 기능은 URL의 주소와 포트를 구문 분석하는 것입니다.
그럼 가장 중요한 부분이 나옵니다. ngx_http_core_listen() 함수는 마지막에 ngx_http_add_listen() 함수를 호출합니다. 이 함수는 수신 포트 정보를 ngx_http_core_main_conf_t 구조의 포트 동적 배열에 저장합니다.
ngx_http_add_listen() 함수
// cf: 配置结构体 // cscf: listen指令所在的server的配置结构体 // lsopt : ngx_http_core_listen()生成的listen option ngx_int_t ngx_http_add_listen(ngx_conf_t *cf, ngx_http_core_srv_conf_t *cscf, ngx_http_listen_opt_t *lsopt) { in_port_t p; ngx_uint_t i; struct sockaddr *sa; ngx_http_conf_port_t *port; ngx_http_core_main_conf_t *cmcf; // 获取 ngx_http_core_module模块的main_conf结构体ngx_http_core_main_conf_t cmcf = ngx_http_conf_get_module_main_conf(cf, ngx_http_core_module); // ports字段是一个数组 if (cmcf->ports == null) { cmcf->ports = ngx_array_create(cf->temp_pool, 2, sizeof(ngx_http_conf_port_t)); if (cmcf->ports == null) { return ngx_error; } } sa = &lsopt->sockaddr.sockaddr; p = ngx_inet_get_port(sa); port = cmcf->ports->elts; for (i = 0; i < cmcf->ports->nelts; i++) { if (p != port[i].port || sa->sa_family != port[i].family) { continue; } /* a port is already in the port list */ return ngx_http_add_addresses(cf, cscf, &port[i], lsopt); } /* add a port to the port list */ port = ngx_array_push(cmcf->ports); if (port == null) { return ngx_error; } port->family = sa->sa_family; port->port = p; port->addrs.elts = null; return ngx_http_add_address(cf, cscf, port, lsopt); }
이 함수는 포트 번호 정보를 ngx_http_core_main_conf_t 구조의 포트 필드에 저장합니다.
위 내용은 nginx에서 Listen 명령을 사용하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!