목차
1. 소개
loguru를 사용하는 이유는 무엇입니까?
2. loguru를 우아하게 사용하세요
1. loguru 설치
2. 기능 및 특징 소개
3. 즉시 사용할 수 있으며 준비가 필요하지 않습니다.
4. 더 간편해진 파일 로깅 및 덤프/보존/압축 방법
5. 더 우아한 문자열 형식의 출력
6. 메인 스레드
7 다양한 수준의 로깅 스타일을 설정할 수 있습니다
8 비동기 및 스레드 및 다중 프로세스 안전성을 지원합니다.
15. 非常方便的解析器
16. 通知机制 (邮件告警)
17. Flask 框架集成
18. 要点解析
三、总结
2.常见错误2:
백엔드 개발 파이썬 튜토리얼 Python3 Loguru 출력 로그 도구를 사용하는 방법

Python3 Loguru 출력 로그 도구를 사용하는 방법

May 15, 2023 pm 03:13 PM
python loguru

1. 소개

Python 로깅 모듈은 애플리케이션과 라이브러리에 대한 유연한 이벤트 로깅을 구현하는 함수와 클래스를 정의합니다.

프로그램 개발 과정에서 많은 프로그램은 로그를 기록해야 하며 로그에 포함된 정보에는 일반 프로그램 액세스 로그가 포함되며 오류, 경고 및 기타 정보 출력도 포함될 수 있습니다. Python의 로깅 모듈은 표준 로그 인터페이스를 제공합니다. 다양한 형태로 로그를 저장하며, 로깅은 간단한 로깅 사용을 위한 편의 기능 세트를 제공합니다.

Python 로깅 모듈을 사용하는 주요 이점은 모든 Python 모듈이 로깅에 참여할 수 있다는 것입니다. 로깅 모듈은 다양한 유연한 기능을 제공합니다.

loguru를 사용하는 이유는 무엇입니까?

필요한 로그 정보를 출력하는 데 도움이 되는 것은 간단하고 편리합니다.

Python을 사용하여 프로그램이나 스크립트를 작성할 때 일반적인 문제는 로그를 삭제해야 한다는 것입니다. 한편으로는 프로그램에 문제가 있을 때 문제를 해결하는 데 도움이 될 수 있고, 다른 한편으로는 주의가 필요한 정보를 기록하는 데 도움이 될 수 있습니다.
그러나 내장된 로깅 모듈을 사용하는 경우에는 다른 초기화 및 기타 관련 작업을 수행해야 합니다. 이 모듈에 익숙하지 않은 학생들에게는 Handler/Formatter 설정 등의 설정이 필요한 등 여전히 다소 어렵습니다. 비즈니스가 복잡해짐에 따라 로그 분류, 파일 저장, 비동기 쓰기, 사용자 정의 유형 등과 같은 로그 수집에 대한 요구 사항이 높아집니다.

loguru는 Python의 간단하고 강력한 타사 로깅 라이브러리입니다. 표준 로거의 문제점을 해결하는 다양한 유용한 기능을 추가하여 Python 로깅을 덜 고통스럽게 만드는 것을 목표로 합니다.

2. loguru를 우아하게 사용하세요

1. loguru 설치

pip install loguru
로그인 후 복사

2. 기능 및 특징 소개

많은 장점이 있지만, 다음은 더 중요한 것입니다:

  • 즉시 사용할 수 있습니다. 준비가 필요하지 않습니다

  • 초기화가 필요하지 않으며 가져온 기능을 사용할 수 있습니다.

  • 보다 쉬운 파일 로깅 및 덤프/보존/압축 방법

  • 더욱 우아한 문자열 형식의 출력

  • 스레드 또는 스레드에서 사용할 수 있습니다. main 스레드의 Catch 예외

  • 다양한 수준의 로깅 스타일을 설정할 수 있습니다

  • 비동기, 스레드 및 다중 프로세스 안전 지원

  • 지연 계산 지원

  • 스크립트 및 라이브러리에 적합

  • 표준 로깅과 완벽하게 호환

  • 더 나은 날짜 및 시간 처리

3. 즉시 사용할 수 있으며 준비가 필요하지 않습니다.

from loguru import logger  
logger.debug("That's it, beautiful and simple logging!")
로그인 후 복사

초기화할 필요 없이 사용할 기능을 가져오기만 하면 됩니다. 문제를 해결하는 방법을 물어봐야 합니다.

  • 핸들러를 추가하는 방법은 무엇입니까?

  • 로그 형식을 어떻게 설정하나요?

  • 메시지를 필터링하는 방법은 무엇입니까?

  • 로그 수준을 어떻게 설정하나요?

# add  
logger.add(sys.stderr, \  
    format="{time} {level} {message}",\  
    filter="my_module",\  
    level="INFO")
로그인 후 복사

정말 쉽지 않나요~

4. 더 간편해진 파일 로깅 및 덤프/보존/압축 방법

# 日志文件记录  
logger.add("file_{time}.log")  
# 日志文件转存  
logger.add("file_{time}.log", rotation="500 MB")  
logger.add("file_{time}.log", rotation="12:00")  
logger.add("file_{time}.log", rotation="1 week")  
# 多次时间之后清理  
logger.add("file_X.log", retention="10 days")  
# 使用zip文件格式保存  
logger.add("file_Y.log", compression="zip")
로그인 후 복사

5. 더 우아한 문자열 형식의 출력

logger.info(  
    "If you're using Python {}, prefer {feature} of course!",  
    3.10, feature="f-strings")
로그인 후 복사

6. 메인 스레드

@logger.catch  
def my_function(x, y, z):  
    # An error? It's caught anyway!  
    return 1 / (x + y + z)  
my_function(0, 0, 0)
로그인 후 복사

7 다양한 수준의 로깅 스타일을 설정할 수 있습니다

Loguru는 다양한 로그 수준을 구별하기 위해 자동으로 다양한 색상을 추가하고 사용자 정의 색상도 지원합니다~

logger.add(sys.stdout,  
    colorize=True,  
    format="<green>{time}</green> <level>{message}</level>")  
logger.add(&#39;logs/z_{time}.log&#39;,  
           level=&#39;DEBUG&#39;,  
           format=&#39;{time:YYYY-MM-DD :mm:ss} - {level} - {file} - {line} - {message}&#39;,  
           rotation="10 MB")
로그인 후 복사

8 비동기 및 스레드 및 다중 프로세스 안전성을 지원합니다.

  • 기본적으로 로거에 추가된 로그 정보는 스레드로부터 안전합니다. 하지만 이는 다중 프로세스에 안전하지 않으므로 enqueue 매개변수를 추가하여 로그 무결성을 보장할 수 있습니다.

  • 비동기 작업에서 로깅을 사용하려는 경우 동일한 매개변수를 사용하여 이를 보장할 수도 있습니다. 그리고 Complete()를 통해 실행이 완료될 때까지 기다립니다.

  • # 异步写入  
    logger.add("some_file.log", enqueue=True)
    로그인 후 복사
잘 읽으셨습니다. 단지

비동기적으로 실행될 수 있습니다. enqueue=True

9. 예외에 대한 완전한 설명

은 전체 스택 추적을 표시할 수 있도록 허용하여 코드에서 발생하는 예외의 버그 추적을 기록하는 데 사용됩니다( 변수 값 포함) 문제를 식별하는 데 도움이 됩니다

logger.add("out.log", backtrace=True, diagnose=True)  
def func(a, b):  
    return a / b  
def nested(c):  
    try:  
        func(5, c)  
    except ZeroDivisionError:  
        logger.exception("What?!")  
nested(0)
로그인 후 복사

10. 구조적 로깅

  • 데이터 구조를 더 쉽게 구문 분석하거나 전달할 수 있도록 로그를 직렬화하고, 구성된 수신기에 각 로그 메시지를 보내기 전에 직렬화 매개변수를 사용하세요. JSON 문자열로 변환하기 전에.

  • 또한, 바인딩() 메서드를 사용하면 추가 레코드 속성을 수정하여 로거 메시지를 컨텍스트에 넣을 수 있습니다. 또한 바인딩()과 필터를 결합하여 로깅을 보다 세밀하게 제어할 수 있습니다.

  • 마지막으로 patch() 메소드를 사용하면 각각의 새 메시지에 대한 레코드 사전에 동적 값을 추가할 수 있습니다.

  • # 序列化为json格式  
    logger.add(custom_sink_function, serialize=True)  
    # bind方法的用处  
    logger.add("file.log", format="{extra[ip]} {extra[user]} {message}")  
    context_logger = logger.bind(ip="192.168.2.174", user="someone")  
    context_logger.info("Contextualize your logger easily")  
    context_logger.bind(user="someone_else").info("Inline binding of extra attribute")  
    context_logger.info("Use kwargs to add context during formatting: {user}", user="anybody")  
    # 粒度控制  
    logger.add("special.log", filter=lambda record: "special" in record["extra"])  
    logger.debug("This message is not logged to the file")  
    logger.bind(special=True).info("This message, though, is logged to the file!")  
    # patch()方法的用处  
    logger.add(sys.stderr, format="{extra[utc]} {message}")  
    loggerlogger = logger.patch(lambda record: record["extra"].update(utc=datetime.utcnow()))
    로그인 후 복사
11. 게으른 평가

때때로 성능에 영향을 주지 않고 프로덕션 환경에서 세부 정보를 기록하려는 경우 opt() 메서드를 사용하면 됩니다.

logger.opt(lazy=True).debug("If sink level <= DEBUG: {x}", x=lambda: expensive_function(2**64))  
# By the way, "opt()" serves many usages  
logger.opt(exception=True).info("Error stacktrace added to the log message (tuple accepted too)")  
logger.opt(colors=True).info("Per message <blue>colors</blue>")  
logger.opt(record=True).info("Display values from the record (eg. {record[thread]})")  
logger.opt(raw=True).info("Bypass sink formatting\n")  
logger.opt(depth=1).info("Use parent stack context (useful within wrapped functions)")  
logger.opt(capture=False).info("Keyword arguments not added to {dest} dict", dest="extra")
로그인 후 복사

12. 사용자 정의 가능한 레벨

new_level = logger.level("SNAKY", no=38, color="<yellow>", icon="????")  
logger.log("SNAKY", "Here we go!")
로그인 후 복사

13. 스크립트 및 라이브러리와 함께 작동합니다.

# For scripts  
config = {  
    "handlers": [  
        {"sink": sys.stdout, "format": "{time} - {message}"},  
        {"sink": "file.log", "serialize": True},  
    ],  
    "extra": {"user": "someone"}  
}  
logger.configure(**config)  
# For libraries  
logger.disable("my_library")  
logger.info("No matter added sinks, this message is not displayed")  
logger.enable("my_library")  
logger.info("This message however is propagated to the sinks")
로그인 후 복사

14. 표준 로깅과 완벽하게 호환됩니다.

  • Loguru를 내장 로그 처리기로 사용하고 싶으십니까?

  • Loguru 메시지를 표준 로그로 변환해야 합니까?

  • 표준 로그 메시지를 가로채서 Loguru로 요약하고 싶으신가요?

handler = logging.handlers.SysLogHandler(address=(&#39;localhost&#39;, 514)) 
logger.add(handler)  
class PropagateHandler(logging.Handler):  
    def emit(self, record):  
        logging.getLogger(record.name).handle(record)  
logger.add(PropagateHandler(), format="{message}")  
class InterceptHandler(logging.Handler):  
    def emit(self, record):  
        # Get corresponding Loguru level if it exists  
        try:  
            level = logger.level(record.levelname).name  
        except ValueError:  
            level = record.levelno  
        # Find caller from where originated the logged message  
        frame, depth = logging.currentframe(), 2  
        while frame.f_code.co_filename == logging.__file__:  
            frameframe = frame.f_back  
            depth += 1  
        logger.opt(depthdepth=depth, exception=record.exc_info).log(level, record.getMessage())  
logging.basicConfig(handlers=[InterceptHandler()], level=0)
로그인 후 복사

15. 非常方便的解析器

从生成的日志中提取特定的信息通常很有用,这就是为什么 Loguru 提供了一个 parse() 方法来帮助处理日志和正则表达式。

pattern = r"(?P<time>.*) - (?P<level>[0-9]+) - (?P<message>.*)"  # Regex with named groups  
caster_dict = dict(time=dateutil.parser.parse, level=int)        # Transform matching groups  
for groups in logger.parse("file.log", pattern, cast=caster_dict):  
    print("Parsed:", groups) 
    # {"level": 30, "message": "Log example", "time": datetime(2018, 12, 09, 11, 23, 55)}
로그인 후 복사

16. 通知机制 (邮件告警)

import notifiers  
params = {  
    "username": "you@gmail.com",  
    "password": "abc123",  
    "to": "dest@gmail.com"  
}  
# Send a single notification  
notifier = notifiers.get_notifier("gmail")  
notifier.notify(message="The application is running!", **params)  
# Be alerted on each error message  
from notifiers.logging import NotificationHandler  
handler = NotificationHandler("gmail", defaults=params)  
logger.add(handler, level="ERROR")
로그인 후 복사

17. Flask 框架集成

  • 现在最关键的一个问题是如何兼容别的 logger,比如说 tornado 或者 django 有一些默认的 logger。

  • 经过研究,最好的解决方案是参考官方文档的,完全整合 logging 的工作方式。比如下面将所有的 logging都用 loguru 的 logger 再发送一遍消息。

import logging  
import sys  
from pathlib import Path  
from flask import Flask  
from loguru import logger  
app = Flask(__name__)  
class InterceptHandler(logging.Handler):  
    def emit(self, record):  
        loggerlogger_opt = logger.opt(depth=6, exception=record.exc_info)  
        logger_opt.log(record.levelname, record.getMessage())  
def configure_logging(flask_app: Flask):  
    """配置日志"""  
    path = Path(flask_app.config[&#39;LOG_PATH&#39;])  
    if not path.exists():  
        path.mkdir(parents=True)  
    log_name = Path(path, &#39;sips.log&#39;)  
    logging.basicConfig(handlers=[InterceptHandler(level=&#39;INFO&#39;)], level=&#39;INFO&#39;)  
    # 配置日志到标准输出流  
    logger.configure(handlers=[{"sink": sys.stderr, "level": &#39;INFO&#39;}])  
    # 配置日志到输出到文件  
    logger.add(log_name, rotation="500 MB", encoding=&#39;utf-8&#39;, colorize=False, level=&#39;INFO&#39;)
로그인 후 복사

18. 要点解析

介绍,主要函数的使用方法和细节 - add()的创建和删除

  • add() 非常重要的参数 sink 参数

  • 具体的实现规范可以参见官方文档

  • 可以实现自定义 Handler 的配置,比如 FileHandler、StreamHandler 等等

  • 可以自行定义输出实现

  • 代表文件路径,会自动创建对应路径的日志文件并将日志输出进去

  • 例如 sys.stderr 或者 open(‘file.log’, ‘w’) 都可以

  • 可以传入一个 file 对象

  • 可以直接传入一个 str 字符串或者 pathlib.Path 对象

  • 可以是一个方法

  • 可以是一个 logging 模块的 Handler

  • 可以是一个自定义的类

def add(self, sink, *,  
    level=_defaults.LOGURU_LEVEL, format=_defaults.LOGURU_FORMAT,  
    filter=_defaults.LOGURU_FILTER, colorize=_defaults.LOGURU_COLORIZE,  
    serialize=_defaults.LOGURU_SERIALIZE, backtrace=_defaults.LOGURU_BACKTRACE,  
    diagnose=_defaults.LOGURU_DIAGNOSE, enqueue=_defaults.LOGURU_ENQUEUE,  
    catch=_defaults.LOGURU_CATCH, **kwargs  
):
로그인 후 복사

另外添加 sink 之后我们也可以对其进行删除,相当于重新刷新并写入新的内容。删除的时候根据刚刚 add 方法返回的 id 进行删除即可。可以发现,在调用 remove 方法之后,确实将历史 log 删除了。但实际上这并不是删除,只不过是将 sink 对象移除之后,在这之前的内容不会再输出到日志中,这样我们就可以实现日志的刷新重新写入操作

from loguru import logger  
trace = logger.add(&#39;runtime.log&#39;)  
logger.debug(&#39;this is a debug message&#39;)  
logger.remove(trace)  
logger.debug(&#39;this is another debug message&#39;)
로그인 후 복사

三、总结

我们在开发流程中, 通过日志快速定位问题, 高效率解决问题, 我认为 loguru 能帮你解决不少麻烦, 赶快试试吧~

当然, 使用各种也有不少麻烦, 例如:

1. 常见错误1:

--- Logging error in Loguru Handler #3 ---
Record was: None
Traceback (most recent call last):
  File "/usr/local/lib/python3.9/site-packages/loguru/_handler.py", line 272, in _queued_writer
    message = queue.get()
  File "/usr/local/lib/python3.9/multiprocessing/queues.py", line 366, in get
    res = self._reader.recv_bytes()
  File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 221, in recv_bytes
    buf = self._recv_bytes(maxlength)
  File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 419, in _recv_bytes
    buf = self._recv(4)
  File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 384, in _recv
    chunk = read(handle, remaining)
OSError: [Errno 9] Bad file descriptor
--- End of logging error ---

解决办法:
尝试将logs文件夹忽略git提交, 避免和服务器文件冲突即可;
当然也不止这个原因引起这个问题, 也可能是三方库(ciscoconfparse)冲突所致.解决办法: https://github.com/Delgan/loguru/issues/534

2.常见错误2:

File "/home/ronaldinho/xxx/xxx/venv/lib/python3.9/site-packages/loguru/_logger.py", line 939, in add
    handler = Handler(
  File "/home/ronaldinho/xxx/xxx/venv/lib/python3.9/site-packages/loguru/_handler.py", line 86, in __init__
    self._queue = multiprocessing.SimpleQueue()
  File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/context.py", line 113, in SimpleQueue
    return SimpleQueue(ctx=self.get_context())
  File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/queues.py", line 342, in __init__
    self._rlock = ctx.Lock()
  File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/context.py", line 68, in Lock
    return Lock(ctx=self.get_context())
  File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/synchronize.py", line 162, in __init__
  File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/synchronize.py", line 57, in __init__
OSError: [Errno 24] Too many open files

你可以 remove()添加的处理程序,它应该释放文件句柄。 


위 내용은 Python3 Loguru 출력 로그 도구를 사용하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

MySQL은 지불해야합니다 MySQL은 지불해야합니다 Apr 08, 2025 pm 05:36 PM

MySQL에는 무료 커뮤니티 버전과 유료 엔터프라이즈 버전이 있습니다. 커뮤니티 버전은 무료로 사용 및 수정할 수 있지만 지원은 제한되어 있으며 안정성이 낮은 응용 프로그램에 적합하며 기술 기능이 강합니다. Enterprise Edition은 안정적이고 신뢰할 수있는 고성능 데이터베이스가 필요하고 지원 비용을 기꺼이 지불하는 응용 프로그램에 대한 포괄적 인 상업적 지원을 제공합니다. 버전을 선택할 때 고려 된 요소에는 응용 프로그램 중요도, 예산 책정 및 기술 기술이 포함됩니다. 완벽한 옵션은없고 가장 적합한 옵션 만 있으므로 특정 상황에 따라 신중하게 선택해야합니다.

설치 후 MySQL을 사용하는 방법 설치 후 MySQL을 사용하는 방법 Apr 08, 2025 am 11:48 AM

이 기사는 MySQL 데이터베이스의 작동을 소개합니다. 먼저 MySQLworkBench 또는 명령 줄 클라이언트와 같은 MySQL 클라이언트를 설치해야합니다. 1. MySQL-Uroot-P 명령을 사용하여 서버에 연결하고 루트 계정 암호로 로그인하십시오. 2. CreateABase를 사용하여 데이터베이스를 작성하고 데이터베이스를 선택하십시오. 3. CreateTable을 사용하여 테이블을 만들고 필드 및 데이터 유형을 정의하십시오. 4. InsertInto를 사용하여 데이터를 삽입하고 데이터를 쿼리하고 업데이트를 통해 데이터를 업데이트하고 DELETE를 통해 데이터를 삭제하십시오. 이러한 단계를 마스터하고 일반적인 문제를 처리하는 법을 배우고 데이터베이스 성능을 최적화하면 MySQL을 효율적으로 사용할 수 있습니다.

다운로드 후 MySQL을 설치할 수 없습니다 다운로드 후 MySQL을 설치할 수 없습니다 Apr 08, 2025 am 11:24 AM

MySQL 설치 실패의 주된 이유는 다음과 같습니다. 1. 권한 문제, 관리자로 실행하거나 Sudo 명령을 사용해야합니다. 2. 종속성이 누락되었으며 관련 개발 패키지를 설치해야합니다. 3. 포트 충돌, 포트 3306을 차지하는 프로그램을 닫거나 구성 파일을 수정해야합니다. 4. 설치 패키지가 손상되어 무결성을 다운로드하여 확인해야합니다. 5. 환경 변수가 잘못 구성되었으며 운영 체제에 따라 환경 변수를 올바르게 구성해야합니다. 이러한 문제를 해결하고 각 단계를 신중하게 확인하여 MySQL을 성공적으로 설치하십시오.

MySQL 다운로드 파일이 손상되어 설치할 수 없습니다. 수리 솔루션 MySQL 다운로드 파일이 손상되어 설치할 수 없습니다. 수리 솔루션 Apr 08, 2025 am 11:21 AM

MySQL 다운로드 파일은 손상되었습니다. 어떻게해야합니까? 아아, mySQL을 다운로드하면 파일 손상을 만날 수 있습니다. 요즘 정말 쉽지 않습니다! 이 기사는 모든 사람이 우회를 피할 수 있도록이 문제를 해결하는 방법에 대해 이야기합니다. 읽은 후 손상된 MySQL 설치 패키지를 복구 할 수있을뿐만 아니라 향후에 갇히지 않도록 다운로드 및 설치 프로세스에 대해 더 깊이 이해할 수 있습니다. 파일 다운로드가 손상된 이유에 대해 먼저 이야기합시다. 이에 대한 많은 이유가 있습니다. 네트워크 문제는 범인입니다. 네트워크의 다운로드 프로세스 및 불안정성의 중단으로 인해 파일 손상이 발생할 수 있습니다. 다운로드 소스 자체에도 문제가 있습니다. 서버 파일 자체가 고장 났으며 물론 다운로드하면 고장됩니다. 또한 일부 안티 바이러스 소프트웨어의 과도한 "열정적 인"스캔으로 인해 파일 손상이 발생할 수 있습니다. 진단 문제 : 파일이 실제로 손상되었는지 확인하십시오

MySQL은 인터넷이 필요합니까? MySQL은 인터넷이 필요합니까? Apr 08, 2025 pm 02:18 PM

MySQL은 기본 데이터 저장 및 관리를위한 네트워크 연결없이 실행할 수 있습니다. 그러나 다른 시스템과의 상호 작용, 원격 액세스 또는 복제 및 클러스터링과 같은 고급 기능을 사용하려면 네트워크 연결이 필요합니다. 또한 보안 측정 (예 : 방화벽), 성능 최적화 (올바른 네트워크 연결 선택) 및 데이터 백업은 인터넷에 연결하는 데 중요합니다.

MySQL 설치 후 시작할 수없는 서비스에 대한 솔루션 MySQL 설치 후 시작할 수없는 서비스에 대한 솔루션 Apr 08, 2025 am 11:18 AM

MySQL이 시작을 거부 했습니까? 당황하지 말고 확인합시다! 많은 친구들이 MySQL을 설치 한 후 서비스를 시작할 수 없다는 것을 알았으며 너무 불안했습니다! 걱정하지 마십시오.이 기사는 침착하게 다루고 그 뒤에있는 마스터 마인드를 찾을 수 있습니다! 그것을 읽은 후에는이 문제를 해결할뿐만 아니라 MySQL 서비스에 대한 이해와 문제 해결 문제에 대한 아이디어를 향상시키고보다 강력한 데이터베이스 관리자가 될 수 있습니다! MySQL 서비스는 시작되지 않았으며 간단한 구성 오류에서 복잡한 시스템 문제에 이르기까지 여러 가지 이유가 있습니다. 가장 일반적인 측면부터 시작하겠습니다. 기본 지식 : 서비스 시작 프로세스 MySQL 서비스 시작에 대한 간단한 설명. 간단히 말해서 운영 체제는 MySQL 관련 파일을로드 한 다음 MySQL 데몬을 시작합니다. 여기에는 구성이 포함됩니다

MySQL 설치 후 데이터베이스 성능을 최적화하는 방법 MySQL 설치 후 데이터베이스 성능을 최적화하는 방법 Apr 08, 2025 am 11:36 AM

MySQL 성능 최적화는 설치 구성, 인덱싱 및 쿼리 최적화, 모니터링 및 튜닝의 세 가지 측면에서 시작해야합니다. 1. 설치 후 innodb_buffer_pool_size 매개 변수와 같은 서버 구성에 따라 my.cnf 파일을 조정해야합니다. 2. 과도한 인덱스를 피하기 위해 적절한 색인을 작성하고 Execution 명령을 사용하여 실행 계획을 분석하는 것과 같은 쿼리 문을 최적화합니다. 3. MySQL의 자체 모니터링 도구 (showprocesslist, showstatus)를 사용하여 데이터베이스 건강을 모니터링하고 정기적으로 백업 및 데이터베이스를 구성하십시오. 이러한 단계를 지속적으로 최적화함으로써 MySQL 데이터베이스의 성능을 향상시킬 수 있습니다.

고로드 애플리케이션의 MySQL 성능을 최적화하는 방법은 무엇입니까? 고로드 애플리케이션의 MySQL 성능을 최적화하는 방법은 무엇입니까? Apr 08, 2025 pm 06:03 PM

MySQL 데이터베이스 성능 최적화 안내서 리소스 집약적 응용 프로그램에서 MySQL 데이터베이스는 중요한 역할을 수행하며 대규모 트랜잭션 관리를 담당합니다. 그러나 응용 프로그램 규모가 확장됨에 따라 데이터베이스 성능 병목 현상은 종종 제약이됩니다. 이 기사는 일련의 효과적인 MySQL 성능 최적화 전략을 탐색하여 응용 프로그램이 고 부하에서 효율적이고 반응이 유지되도록합니다. 실제 사례를 결합하여 인덱싱, 쿼리 최적화, 데이터베이스 설계 및 캐싱과 같은 심층적 인 주요 기술을 설명합니다. 1. 데이터베이스 아키텍처 설계 및 최적화 된 데이터베이스 아키텍처는 MySQL 성능 최적화의 초석입니다. 몇 가지 핵심 원칙은 다음과 같습니다. 올바른 데이터 유형을 선택하고 요구 사항을 충족하는 가장 작은 데이터 유형을 선택하면 저장 공간을 절약 할 수있을뿐만 아니라 데이터 처리 속도를 향상시킬 수 있습니다.

See all articles